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1 Proof of learning bounds

1.1 Theorem

Theorem 1. Suppose algorithm A finds a hypothesis hA ∈ H consistent with m examples,
where m ≥ 1

ε (ln |H|+ ln 1
δ ). Then Pr[errD(h) ≥ ε] ≤ δ.

We have made two assumptions for this theorem to apply. We assume (1) finite hypothe-
ses space (2) both training and testing examples are independent and identically distributed
(i.i.d.) according to some distribution D. This theorem provides an upper bound on the
amount of training data m needed to achieve a certain error rate given ε, δ, and size of the
hypotheses space |H|.

1.2 Proof

We define B = {h ∈ H : h ε-bad} as the set of all h ∈ H that is ε-bad. ε-bad is defined as
errD(h) > ε, which means that the hypothesis h has a performance worse than ε.

Proof. Assume hA is consistent. We aim at providing an upper-bound to Pr[errD(h) ≥ ε],
which is the probability that the hypothesis generated by A has a performance worse than
ε.

Pr[hA ε-bad] (1.1)
= Pr[hA consistent ∧ hA ε-bad] (1.2)
≤ Pr[∃h ∈ H : h consistent ∧ ε-bad] (1.3)
= Pr[∃h ∈ B : h consistent] (1.4)

= Pr[
∨
h∈B

h consistent] (1.5)

≤
∑
h∈B

Pr[h consistent] (1.6)

=
∑
h∈B

Pr[(h(x1) = c(x1) ∧ · · · ∧ h(xm) = c(xm))] (1.7)



=
∑
h∈B

m∏
i=1

Pr[h(xi) = c(xi)] (1.8)

≤
∑
h∈B

(1− ε)m (1.9)

= |B|(1− ε)m (1.10)
≤ |H|(1− ε)m (1.11)
≤ |H|e−εm (1.12)
≤ δ (1.13)

Since we assume hA is consistent, Equation(1.2) is directly implied by Equation(1.1).
Equation (1.3) use the fact that if A,B are two events and A implies B, then Pr[A] ≤
Pr[B]. We apply the definition of B to get Equation(1.4). Equation (1.6) uses union
bound: Pr[A∨B] ≤ Pr[A] +Pr[B]. Equation (1.7) is just the definition of consistency. By
applying the independence assumption that the m examples are sampled from distribution
D, we get Equation (1.8). For Equation (1.9), since h ∈ B, therefore h is ε-bad, which
means that with probability (1 − ε) that h is consistent to data xi. Equation (1.11) is
straightforward, since B ⊆ H. Equation(1.12) is based on the inequality 1 + x ≤ ex.

1.3 Intuition

This theorem shows that when hypothesis space H is finite, a consistent algorithm A is
a PAC-learning algorithm. This theorem provides an upper bound on how much data we
need to achieve a certain general error rate. The bound captures a general relation between
learning performance and the size of the hypothesis space, and the number of training
examples. From the result we can see that the more data we have, the lower the upper
bound of error we can achieve. Furthermore, the smaller the hypothesis size |H| is (by
knowing more about the concept space), the less data we need to achieve a certain general
error rate.

1.4 A seemingly plausible argument

We claim that the bound provided in Theorem 1 is not tight enough, since we are trying to
bound it based on the size of the whole hypothesis space. Now let’s try deriving an upper
bound without using |H|. Say hA is the hypothesis output by the algorithm A given sample
S, which contains m examples.
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Pr[hA ε-bad|hA consistent] (1.14)

=
Pr[hA consistent|hA ε-bad]Pr[hA ε-bad]

Pr[hA consistent]
(1.15)

≤ Pr[hA consistent|hA ε-bad] (1.16)
= Pr[hA(x1) = c(x1) ∧ · · · ∧ hA(xm) = c(xm)|hA ε-bad] (1.17)

=
m∏
i=1

Pr[hA(xi) = c(xi)|hA ε-bad] (1.18)

≤ (1− ε)m (1.19)
≤ e−εm (1.20)
≤ δ (1.21)

Therefore we get a tighter bound on m, such that as long as m ≥ 1
ε ln

1
δ we can get an

upper bound δ on Pr[hA ε-bad|hA consistent].
We derive Equation (1.15) based on bayes rule. Since we know Pr[hA ε− bad] ≤ 1 and

Pr[hA consistent] = 1, we get Equation (1.16). Equation (1.17) is derived by applying the
definition of consistency. By applying the independence assumption that the m examples
are sampled from distribution D, we get Equation (1.18). For Equation (1.19), given hA is
ε-bad, we know err(hA) > ε, and the probability of hA(xi) = c(xi) shall be less than 1− ε.

The argument seems plausible, but it is actually incorrect. The problem is that the
hypothesis hA is generated from the sample S, therefore it’s actually a random variable
that depends on the sample S. Since hA depends on the sample S, given hA is ε-bad,
those samples are no longer i.i.d. Equation (1.18) is incorrect. Besides, Pr[hA(xi) =
c(xi)|hA ε-bad] should be 1 for all i, because hA ε-bad already implies consistency of hA for
all samples m.

2 Consistency via PAC

Previously we were discussing the derivation of PAC learning given consistency on training
samples. However, given a PAC algorithm A, can A find a target concept c such that it’s
consistent with all the examples?

Proposition. Say C is PAC-learnable by C using algorithm A. Then A can be used as
a subroutine to find, given n examples S, a concept c in C that is consistent with all n
examples (if one exists).

Proof. Given n examples, we construct a distribution D that is uniform over the n examples
in S. We choose ε < 1

n , and any desired value of δ > 0. We run algorithm A by sampling m
examples from distribution D (where m is the number of examples required by A to attain
the desired accuracy ε and confidence δ) to get hypothesis h ∈ C, such that errD(h) ≤ ε < 1

n
with probability ≥ (1 − δ). Given that D is uniform over S, if h makes any error on any
example, the probability of errD(h) will be at least 1

n , which contradicts the ε we picked.
Therefore, h is consistent with all n examples.
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3 Learnability of Infinite Hypothesis Spaces

The result shown above only holds for finite hypothesis spaces. There are still various
methods, such as for half-lines, rectangles, etc. that allow us to learn even though they
have infinite hypothesis spaces. We tried to discuss what is the characteristic to make some
C PAC-learnable. Before looking at some example, we first define growth function.

Definition. Growth function
For an unlabeled sample set S = 〈x1, x2, . . . , xm〉, define a behavior set ΠH(S) =

{〈h(x1), . . . , h(xm)〉 : h ∈ H} and a growth function ΠH(m) = max|S|=m|ΠH(S)|. No-
tice that ΠH(S) is a set while ΠH(m) is a number.

3.1 Example 1: positive half-lines

Given any unlabeled data set, h1, h2 behave exactly the same on the data set we pro-
vided. Although there are infinitely many hypotheses, with respect to a finite set of train-
ing points, there are only finitely many possible behaviors/labelings/dichotomies. For a
set of four unlabeled data as shown in following figure, there are only 5 possible behav-
iors/labeling/dichotomies.

Generally speaking, given m points of data, there are only m + 1 possible behav-
ior/dichotomies/labelings.

∏
H(m) = m + 1. And these behavior/dichotomies/labelings

kind of define the effective hypothesis spaces.

3.2 Example 2: half-lines

It’s similar to Example 1, however, for half-line we can label data on the right as both +
and −, while positive half-lines we can only label the data on the right as +. We double the
result of example 1 (since we can interchange + and −) while subtracting the all −’s case
and all +’s case which we counted twice. In the end we get ΠH(m) = 2(m+ 1)− 2 = 2m.
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3.3 Example 3: intervals

Given a range on the real axis, classify points within the range as positive, and outside
the range as negative. If there are m points, there will be m+ 1 intervals to place the two
borders of the range. Therefore the number of range will be

(
m+1

2

)
+ 1, where 1 is the case

that both borders are placed within the same interval, and it turns out identical no matter
which interval you pick to place those borders. ΠH(m) =

(
m+1

2

)
+ 1.

3.4 Example 4: worst case

The worst case is that we need a hypothesis space with size equal to all possible functions
on m points, which is 2m.

Since the growth function is way smaller than the size of the original hypothesis space,
it motivates us to replace |H| by the new space ΠH(m) in the theorem.

Also, for any H, we can show that there are only two possible cases for ΠH(m). It’s
either ΠH(m) = 2m (learning is hard) or ΠH(m) = O(md) (learning is possible), where d is
VC-dimension of H.

We state a theorem here, and it will be discussed in the next class.

Theorem. With probability ≥ 1− δ. ∀h ∈ H, if h is consistent, then

errD(h) ≤ O(
ln(ΠH(2m)) + ln1

δ

m
)
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