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1 Quick Review

We would like to explore the consistency model in a little more depth but before we do so,
let’s have a quick review of some salient points.

1.1 Concept Class

To make things as simple as possible, we will often assume that only two labels are possible,
call them 0 and 1. We will also make the simplifying assumption that there is a mapping
from examples to labels. This mapping is called a concept. Thus, a concept is a function
of the form c : X → {0, 1} where X is the space of all possible examples called the domain
or instance space. A collection of concepts is called a concept class. We will often assume
that the examples have been labeled by an unknown concept from a known concept class.

1.2 The Consistency Model

We say that a concept class C is learnable in the consistency model if there is an algorithm
A which, when given any set of labeled examples (x1, y1), . . . , (xm, ym), where xi ∈ X and
yi ∈ {0, 1}, finds a concept c ∈ C that is consistent with the examples (so that c(xi) = yi
for all i), or says (correctly) that there is no such concept. Moreover, we are especially
interested in finding efficient algorithms in this model.

2 Examples of Learning Under Consistency Model

In this section we cover a host of concrete examples and discuss their learnability under the
consistency model. We will find that while the consistency model works well in some cases,
it leaves much to be desired in others. This will be our motivation for developing a more
sophisticated learning model later on.

2.1 Monotone Conjunctions

This example was discussed before but we include it here for completeness.

Suppose the domain is X = {0, 1}n, the set of all n-bit vectors, that is, vectors of the
form x = (x1, . . . , xn) where each variable xj ∈ {0, 1}. Let the concept class C consist of all
monotone conjunctions, that is, the AND of a subset of the (unnegated) variables, such as



c(x) = x2 ∧ x7 ∧ x10. Our data then looks like a set of bit vectors with labels, for instance:

01101 +

11011 +

11001 +

00101 −
11000 −

Given such data, we can learn this class in the consistency model by taking the bitwise
AND of all of the positive examples, then form a conjunction of all variables corresponding
to the bits that are still on. For instance, for the data above, the bitwise AND of the
positive examples gives 01001, i.e., the conjunction x2 ∧ x5. This procedure clearly gives a
conjunction c that is consistent with the positive examples. Moreover, by construction, any
other conjunction c′ that is consistent with the positive examples must contain a subset of
the variables in c, so if c′ is consistent with all the examples (both positive and negative),
then c must be as well.

2.2 Conjunctions

Suppose that as before the domain is X = {0, 1}n, the set of all n-bit vectors, that is, vec-
tors of the form x = (x1, . . . , xn) where each variable xj ∈ {0, 1}. But now, let the concept
class C consist of all conjunctions (not just monotone conjunctions), that is, the AND of a
subset of the (possibly negated) variables, such as c(x) = x2 ∧ x7 ∧ x10 where x denotes the
negation of a variable x.

Our data, of course, will look just as it did before, but our learning algorithm will need to
change. Since we already know how to learn when our concept class consists of monotone
conjunctions, the best thing to do would seem to be to reduce the problem of learning
conjunctions to the problem of learning monotone conjunctions and just use our previous
algorithm. We can do this in the following way. First, for each variable xi, introduce a new
variable zi = xi representing its negation. Recall that we’ve assumed that we’re dealing
with n-bit vectors where xi represents the ith bit of a particular vector and zi represents
the negation of the ith bit of a particular vector. Then, to get our examples into a form our
monotone conjunction learning algorithm can handle, we extend each of our n-bit examples
to 2n-bit examples by concatenating each example with its negation. For instance, if one
of our examples were 11001, our new example would be 11001 concatenated with 00110, or
simply 1100100110. We then have (x1, ..., xn) represent bits (1, ..., n) (as before) and have
(z1, ..., zn) represent bits (n+ 1, ..., 2n). As an example, the following set of bit vectors:

01101 +

11101 +

11100 +

01111 −
11000 −
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would become:

0110110010 +

1110100010 +

1110000011 +

0111110000 −
1100000111 −

and applying our monotone conjunction learning algorithm would yield x2 ∧ x3 ∧ z4 =
x2 ∧ x3 ∧ x4. Note that no consistent monotone conjunction exists for these examples.

Applying the monotone conjunction algorithm to the extended examples results in a con-
junction c that is consistent with the positive (unextended) examples. To see this, simply
note that in order for the monotone conjunction algorithm to include zi, the ith bit of all
of the positive examples must be zero, making xi’s inclusion in c not affect c’s consistency.
Further, by construction, any other conjunction c′ that is consistent with the positive ex-
amples must contain a subset of the variables in c, so if c′ is consistent with all the examples
(both positive and negative), then c must be as well.

2.3 Monotone Disjunctions

Suppose that as before the domain is X = {0, 1}n, the set of all n-bit vectors, that is, vec-
tors of the form x = (x1, . . . , xn) where each variable xj ∈ {0, 1}. But now, let the concept
class C consist of all monotone disjunctions, that is, the OR of a subset of the (unnegated)
variables, such as c(x) = x2 ∨ x7 ∨ x10.

Once again, our data will remain the same but our algorithm will need to change. As
before, we will reduce the problem of learning a monotone disjunction to the problem of
learning a monotone conjunction, which we know how to do. To do this, we need to recall
one simple fact from logic:

(x1 ∨ ... ∨ xn) = (x1 ∧ ... ∧ xn) (1)

where x again denotes the negation of a variable x. This is DeMorgan’s Law and we can use
it to immediately reduce the monotone disjunction problem to the monotone conjunction
problem. Clearly, if we flip all of the bits in our input data and flip all of our labels, and
apply our monotone conjunction algorithm, we will find a concept c such that if we negate
all of the literals in c and then negate the conjunction itself, we will end up with a new
(negated) conjunction c′ that is consistent with the original data. Then, by DeMorgan’s
law, if c′ is consistent with the original data, then the disjunction of all the unnegated
literals in c′, call this c′′, will also be consistent with the original data. Thus c′′ will be the
monotone disjunction we’re looking for. Further, it should also be clear that if the monotone
conjunction algorithm fails to find a concept c consistent with the flipped data, then no
consistent monotone disjuntion exists for the original data, completing our reduction.

2.4 k-CNF Formulas

Suppose that as before the domain is X = {0, 1}n, the set of all n-bit vectors, that is, vectors
of the form x = (x1, . . . , xn) where each variable xj ∈ {0, 1}. But now, let the concept class C
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consist of all k-CNF Formulas, that is, conjunctions of disjunctions (called “clauses”) where
each disjunction has at most k literals. We usually think of k as a small constant; this means
that an O(nk) algorithm (where n is the input size) is thought of as polynomial rather than
exponential. As an example, with k = 2, we could have: c(x) = (x2∨x7)∧ (x10)∧ (x4∨x5).

How do we learn concepts in this class? Once again, we will reduce to monotone con-
junction. We can do this by creating a new variable for every possible clause (disjunction)
that could appear in our k-CNF formula. For example, if we have data in which each ex-
ample is two bits long and we are trying to find a consistent 2-CNF, we create the following
variables:

z1 = (x1)

z2 = (x2)

z3 = (x1 ∨ x2)
z4 = (x1 ∨ x2)
z5 = (x1 ∨ x2)
z6 = (x1 ∨ x2)

Using the example above to describe our reduction, we would then convert our two-bit
examples into six-bit examples where each bit i is 1 if zi is true for that example and 0 oth-
erwise. This could then be fed to our monotone conjunction algorithm, which would result
in a conjunction c of zi’s consistent with the data. Converting these zi’s into their corre-
sponding disjunctions would yield a consistent 2-CNF, c′. It should be clear that the process
as described for this two-bit example can be easily extended to handle the task of finding
consistent k-CNF formulas with n-bit input data. In the general case, we would simply
have more zi variables each corresponding to some permutation of the n (instead of just 2)
variables and their negations. It should also be clear that if the algorithm described fails to
find a consistent k-CNF then no consistent k-CNF can exist, thus completing our reduction.

One thing to note is that the number of zi variables we must create depends on k and
on n. In particular, if we are trying to learn a consistent k-CNF for n-bit strings, we must
consider O((2n)k) possible zi variables. To see this, simply note that the number of k-
CNF’s one can generate with n variables is (2n)(2n−1)...(2n−k) = O((2n)k) because each
position in the k-CNF has 2n possible choices of variables, all the of xi and their negations.
The algorithm is thus efficient (polynomial time) if we assume k to be a small constant
but not otherwise. In particular, if we allow k to be arbitrarily large the algorithm will be
exponential.

2.5 Axis-aligned Rectangles

Suppose now that our domain consists of points in 2-D space. That is, X = R2, or points
of the form x = (x1, x2) where each variable xj ∈ R. Now, let the concept class C consist of
all 2-D axis-aligned rectangles, or to be precise all functions mapping points in a particular
2-D axis-aligned rectangle to {0, 1}. As an example, one concept c ∈ C could map all points
inside the rectangle with lower-left and upper-right corners at (0, 0) and (1, 1) respectively
to 1 and all points outside this rectangle to 0. An illustration of this is shown below.
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Figure 1: A concept that maps points inside the rectangle defined by (0,0) and (1, 1) to +
and points outside this rectangle to 0.

The goal is then to take input examples 〈(x1, y1), ..., (xm, ym)〉 consisting of points, xi,
and labels, yi, and to then find a rectangle that is consistent with these points. Namely, a
rectangle that contains all of the xi that have yi = 1 without containing any of the xi that
have yi = 0.

In order to find such a rectangle, we simply need to compute xmin the smallest x coor-
dinate of all of the positive examples, xmax the largest x coordinate of all the positive
examples, ymin the smallest y coordinate of all the positive examples, and ymax the largest
y coordinate of all the positive examples. Our rectangle, c, will then simply be the rectan-
gle defined by (xmin, ymin) and (xmax, ymax). This will be the smallest rectangle that can
possibly contain all the positive examples and so if any negative examples are contained
inside, we safely conclude that no consistent rectangle exists (because any rectangle that
contains all the positive examples must include the smallest rectangle as a subset). Other-
wise, if all the negative examples are outside this rectangle, we conclude that this rectangle
is consistent.

2.6 Half Hyperspaces

Suppose now that our domain consists of points in n-dimensional space. That is, X = Rn,
or points of the form x = (x1, ..., xn) where each variable xj ∈ R. Now, let the concept
class C consist of all half hyperspaces or, equivalently , all linear threshold functions. As an
example, if we are dealing with 2-D points, one concept c ∈ C could map all points above
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some threshold line to 1 and all points below this threshold to 0. An illustration of this is
shown below. The goal is then to take as input a set of examples 〈(x1, y1), ..., (xm, ym)〉

Figure 2: A concept that maps points in 2-D space above some threshold line to 1 and
points below this threshold line to 0.

consisting of n-dimensional points, xi, and labels, yi, and then to find a hyperplane sepa-
rating the examples with yi = 1 from the examples with yi = 0.

In other words, we want a weight vector w and some threshold b such that w · xi > b
if yi = 1 and w · xi ≤ b if yi = 0. Since the xi are all known, this results in a simple linear
program, which we can solve efficiently using any available linear programming package.

2.7 2-Term DNF

Suppose that the domain is X = {0, 1}n, the set of all n-bit vectors, that is, vectors of the
form x = (x1, . . . , xn) where each variable xj ∈ {0, 1}. Let the concept class C consist of
all 2-term DNF’s, that is, the OR of two arbitrary length conjunctions. As an example, we
could have c(x) = (x2 ∧ x7 ∧ x10) ∨ (x1 ∧ x5).

Now, how do we learn a 2-term DNF given input data? If we can reduce the problem
of finding a 2-Term DNF to the problem of finding a k-CNF, we’ll be done so let’s try
that. First, we recall some basic rules of logic. Informally, we recall that disjunction can
be treated as “multiplication” and conjunction can be treated as “addition”, for example:
(x1 ∧ x2) ∨ (x3 ∧ x4) = (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3) ∧ (x2 ∨ x4). This implies that we
can always convert 2-term DNF’s into 2-CNF’s, but does this mean the class is learnable?
Well, we can always run our 2-CNF learning algorithm and find a consistent 2-CNF, and
if we can always convert this 2-CNF into a 2-term DNF then we’re good. The problem is
that, while we can always convert a 2-term DNF into a 2-CNF, we can’t necessarily go the
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other direction. That is, even if we find a consistent 2-CNF, this doesn’t guarantee that
there exists a consistent 2-term DNF. Informally, the issue is that the space of 2-CNF’s is
a superset of the space of 2-term DNF’s, or: (2-term DNF) ⊆ (2-CNF). As it turns out, in
spite of the fact that learning 2-CNF’s is easy, learning 2-term DNF’s is NP-hard.

Here we arrive at a fundamental problem with our consistency model. It is possible for
a class C to be learnable but to have a subclass of C be unlearnable.

2.8 DNF

Suppose that the domain is X = {0, 1}n, the set of all n-bit vectors, that is, vectors of the
form x = (x1, . . . , xn) where each variable xj ∈ {0, 1}. Let the concept class C consist of
all DNF’s, that is, the OR of an arbitrary number of arbitrary-length conjunctions. As an
example, we could have c(x) = (x2 ∧ x7 ∧ x10) ∨ (x1 ∧ x5) ∨ (x6 ∧ x3 ∧ x4 ∧ x8).

Given input data, finding a consistent DNF is fairly simple. Indeed, all one needs to do is
construct a clause for each positive example with a literal corresponding to the truth value
of each bit. As an example, consider the following examples as input:

01101 + (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5) ∨
11101 + (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5) ∨
11100 + (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5)
01111 −
11000 −

For the positive examples, the DNF has xi as true if the ith bit is 1 and xi as false otherwise.
It should be clear that constructing a DNF in this way works in general.

Clearly this method is effective and efficient at learning a DNF that is consistent with
the input. But what is this DNF even useful for? The DNF will always perfectly fit the
data it is trained on; however, in spite of this it will always label examples it hasn’t seen
before as negative, suggesting that the algorithm will perform very poorly when presented
with new test examples. Not only that, but the size of the DNF is exactly the size of the
positive input data; it is as if the DNF is more a representation of the input data than a
representation of some learned structure in the data. This example highlights a distinction
between memorization (training that involves closely or exactly recording a small number
of examples) and generalization (training with the intention of minimizing error on future
unseen examples) that will be discussed later on.

3 Problems With the Consistency Model

From our examples, we’ve already seen a few shortcomings of the consistency model. In our
2-term DNF example, we saw that a class C can be learnable while a subclass of C can be
unlearnable. Not only that, but from our DNF example, we saw that the consistency model
yields a concept that tells us nothing about the accuracy of the model on new data. That
is, because the only criterion the consistency model considers is how well a concept fits the
training data, it misses a fundamental aspect of learning: predicting labels on new data.
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Indeed, there doesn’t appear to be any direct connection to learning in the case of DNF’s.
Finally, the consistency model has a practical problem in that training data that contains
noise is not handled in a robust way. That is, if presented with noisy data, a concept that
could be learned under a more robust model will be overlooked by the consistency model.
We endeavor to fix these problems in what follows.

4 Probability Review

In order to revise our learning model, we first need an understanding of basic probability.
We don’t need much, just a refresher of a few definitions.

4.1 Definitions

• Event: An outcome to which a probability (real number denoting the likelihood of the
outcome occurring) is assigned. An event is something that either happens or not.

• Random Variable: A variable that takes on values in a probabilistic way. Usually
denoted by a capital letter.

• Distribution: Specifies the likelihood that a random variable takes on particular val-
ues. Usually use Pr[X = x] to denote the probability the random variable X takes
on the value x. Must specify Pr[X = x] for all x and it must be the case that∑

x Pr[X = x] = 1. X ∼ D means “X is chosen randomly from distribution D.”

• Expectation: Expected value of a random variable is denoted by E[X] =
∑

x x ·
Pr[X = x]. Can also take the expected value of a function of a random variable
E[f(X)] =

∑
x f(x) · Pr[X = x].

• Linearity of Expectation: Most important property of expectation. E[X + Y ] =
E[X] + E[Y ] where X and Y are random variables.

• Conditional Probability: The probability of an event a occurring when you know
that an event b has occurred is denoted by Pr[a|b] or the probability of “a given b”.
Pr[a ∧ b] = Pr[a|b] · Pr[b].

• Independence: Two events are independent if and only if Pr[a ∧ b] = Pr[a] · Pr[b].

• Union Bound: This is a useful bound that we will use fairly often. Pr[a1 ∨ ...∨ an] ≤
Pr[a1] + ...+ Pr[an].

5 Probably Approximately Correct Learning

Recall the function of a learning algorithm. Given a set of labelled training examples, its
goal is to generate a prediction rule or “hypothesis”, h, that takes in test examples and
outputs predictive labels. This is summarized in the diagram below:

What we now need to add to this model is the distribution from which the training exam-
ples and the test examples are generated. In particular, we assume that both the training
examples and the test examples are generated from some unknown distribution D, the tar-
get distribution. That is, both sets of examples come from the same distribution. Further,
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Figure 3: The learning algorithm takes in a set of labelled training examples and computes
a prediction rule or “hypothesis”, h. h can then take in new test examples and output
predictive labels.

we assume that each example is generated independently. So all examples are independent
and identically distributed, or iid for short. In general we would like our results to be
distribution-free or such that they hold for any target distribution.

But what about the labels? We want to focus on the simple case where there exists some
function c, the target concept, and each example is labelled according to c. Further, we
assume that c ∈ C where C is our target concept class (or space).

Now that we have our definitions down, we can make claims about the accuracy of our
algorithm. Our algorithm takes in training examples and outputs a hypothesis h. h makes
a mistake if h(x) 6= c(x). We can now measure the accuracy of our algorithm as simply:

errD(h) = Prx∼D[h(x) 6= c(x)] (2)

We call this the algorithm’s generalization error. What we’re generally aiming for is to have
errD(h) be small. When this is true we say that the hypothesis h is approximately correct.

But we can’t always guarantee that errD(h) is small because, depending on which training
examples the algorithm gets, it could be the case that the training data is very unrepresen-
tative of the collection of data as a whole. For example, if we’re trying to use a learning
algorithm to generate a hypothesis that recognizes hand-written digits and we choose train-
ing examples from a bin of letters, it could be the case (although it’s extremely unlikely)
that none of the letters we choose have the digit 2 on them. In this case, the hypothesis will
almost surely have a large generalization error, or large errD(h), since it will mislabel all
the two’s it sees. But what’s the probability that we, by pure chance, get a set of training
examples that don’t contain any two’s? It should be very low indeed, so low as to make
it silly to even consider the possibility of it happening. And so we revise our definition of
accuracy. Instead of seeking algorithms that generate hypotheses that are approximately
correct, we instead seek algorithms that generate hypotheses that are approximately cor-
rect with high probability. That is, we look for hypotheses that are probably approximately
correct (“PAC”). Here approximately correct refers to a small errD(h) and probably refers
to the probability that the errD(h) is small after considering the distribution of training
examples and any randomness inherent in the algorithm.
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5.1 PAC Learnable Definition

We say that a concept class C (class of functions) is PAC learnable by H (hypothesis class
or space) if there exists an efficient algorithm A such that for all concepts c in C and for all
distributions D and for all values of ε > 0 and δ > 0, A takes m = poly(1/ε, 1/δ) examples
S = 〈(x1, c(x1)), ..., (xm, c(xm))〉 where xi ∼ D (sampled randomly from D) and A produces
a hypothesis h in H such that Pr[errD(h) ≤ ε] ≥ 1− δ.
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