
COS 511: Theoretical Machine Learning

Homework #3 Due:
Learning models & Chernoff March 7, 2013

Problem 1

In the batch version of the PAC model, which is the one that we have been studying in class,
the learner must specify how many examples it requires before seeing any of the data. Thus,
before learning begins, the learning algorithm specifies the number of examples needed, and
cannot later ask for more examples.

In contrast, in the oracle version of the PAC model, the learner is not provided with a
fixed batch of examples, but is instead provided with an example “oracle” EX. The learner
requests one example at a time from EX. Each call provides the learner with a single
example. As usual, each example x is selected at random according to the distribution D,
and both x and its label c(x) are provided to the learner. Thus, in this model, the learner
is provided with ε, δ and the oracle EX, and can request as many examples as it wishes
from EX. As usual, the hypothesis that the learner outputs must have error at most ε with
probability at least 1 − δ. Moreover, the total number of examples requested must always
be bounded by a polynomial.

So, the difference between these two models is that in the batch version, the learner
must decide ahead of time how many examples it needs (with knowledge of ε and δ), while
in the oracle version, it can dynamically decide how many examples it needs based on the
data received so far. This problem explores this difference for a simple example studied on
previous problem sets.

As on HW#1 (problem 1), let the domain be X = R, and let Cs be the class of con-
cepts defined by unions of s intervals. That is, each concept c is defined by real numbers
a1, b1, . . . , as, bs where c(x) = 1 if and only if x ∈ [a1, b1]∪ · · · ∪ [as, bs]. For the purposes of
this problem, “efficient” means that the time and sample requirements are polynomial in
1/ε, 1/δ and s.

Note that the previous problem involving this concept class showed that in the batch
version, there exists an efficient algorithm that learns the class Cs for every s when s is
known ahead of time to the learner.

a. [10] Still in the batch version, assume now that the learner does not know s ahead of
time, so that the number of examples needed is only a function of ε and δ. In this
case, show that there is no algorithm (whether efficient or not, and regardless of the
hypothesis space used) that can PAC-learn the class Cs for every s.

b. [15] Turning now to the oracle version, let us continue to assume that the learner does
not know s ahead of time. Describe an efficient algorithm that learns the class Cs for
every s even though s is not known by the learner. (i) Although s is not known at
the beginning of the learning process, show that by the time the algorithm halts, the
total number of examples requested does not exceed a polynomial in 1/ε, 1/δ and s.
(ii) Prove that your algorithm is PAC, being careful to show that the total probability
of your algorithm failing to find a hypothesis with error at most ε cannot exceed δ.
(iii) Derive a “big-Oh” expression for the number of examples needed. (iv) Also argue
that your algorithm halts in time polynomial in 1/ε, 1/δ and s.

(For this problem, do not make any extraneous assumptions about the distribution
D, for instance, about the probability mass of the individual intervals.)



Problem 2

Let D be a distribution over X × {0, 1}, and let S = 〈(x1, y1), . . . , (xm, ym)〉 be a random
sample from D. Let

err(h) = Pr(x,y)∼D [h(x) 6= y]

êrr(h) =
1
m
|{i : h(xi) 6= yi}|.

For simplicity, we will assume that H is finite, although the results of this problem can be
carried over to the infinite case. Note that none of the results depend on |H|.

Let ĥ and h∗ be the hypotheses in H with minimum training error and generalization
error, respectively:

ĥ = arg min
h∈H

êrr(h)

h∗ = arg min
h∈H

err(h).

Be sure to keep in mind that, unlike h∗, ĥ is a random variable that depends on the random
sample S.

a. [10] Prove that
E
[
êrr(ĥ)

]
≤ err(h∗) ≤ E

[
err(ĥ)

]
.

b. [10] Prove that, with probability at least 1− δ,

∣∣∣êrr(ĥ)− E
[
êrr(ĥ)

]∣∣∣ ≤ O
√ ln(1/δ)

m

 .
Give explicit constants, and be sure to end up with a result that does not depend on
|H|.

c. [5] Explain in words the meaning of what you proved in both of the preceding parts,
and how we would expect training error to compare to test error when using a machine
learning algorithm on actual data.

Problem 3

[15] Let X1, . . . , Xm be m random variables that are independent, and which each take
values in [0, 1], but which are not necessarily identically distributed. Let pi = E [Xi], and
let us also define

p̂ =
1
m

m∑
i=1

Xi

p =
1
m

m∑
i=1

pi.

For any q > p, prove that

Pr [p̂ > q] ≤ exp(−RE (q ‖ p)m).
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