Character Animation

COS 426
Syllabus

I. Image processing

II. Modeling

III. Rendering

IV. Animation

- Image Processing
 (Rusty Coleman, CS426, Fall99)

- Modeling
 (Dennis Zorin, CalTech)

- Rendering
 (Michael Bostock, CS426, Fall99)

- Animation
 (Angel, Plate 1)
Computer Animation

• Describing how 3D objects (& cameras) move over time

Pixar
Computer Animation

• Animation
 ◦ Make objects change over time according to scripted actions

• Simulation / dynamics
 ◦ Predict how objects change over time according to physical laws
Computer Animation

- Challenge is balancing between ...
 - Animator control
 - Physical realism
Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture

Angel Plate 1
Keyframe Animation

- Define character poses at specific time steps called “keyframes”
Keyframe Animation

- Interpolate variables describing keyframes to determine poses for character in between

Lasseter '87
Keyframe Animation

- Inbetweening:
 - Linear interpolation - usually not enough continuity

H&B Figure 16.16
Keyframe Animation

• Inbetweening:
 ◦ Spline interpolation - maybe good enough

H&B Figure 16.11
Articulated Figures

- Character poses described by set of rigid bodies connected by “joints”
Articulated Figures

• Well-suited for humanoid characters

Root

Chest
- Neck
 - Head

- LCollar
 - LShld
 - LElbow
 - LWrist
 - LCollar
 - LShld
 - LElbow
 - LWrist

LHip
- LKnee
- LAnkle

RHip
- RKnee
- RAnkle

Rose et al. ‘96
Articulated Figures

- Animation focuses on joint angles
Forward Kinematics

• Describe motion of articulated character

$X = (x, y)$

“End-Effector”
Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

$$X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))$$
Forward Kinematics

- Joint motions specified e.g. by spline curves

\[X = (x, y) \]

\(\Theta_1 \)

\(\Theta_2 \)

\((0, 0) \)

\(l_1 \)

\(l_2 \)
Example: Walk Cycle

- Articulated figure:
Example: Walk Cycle

- Hip joint orientation:

Keyframes
Example: Walk Cycle

• Knee joint orientation:
Example: Walk Cycle

- Ankle joint orientation:

```
1  2  2B  3  3B  4  5
```

Watt & Watt
Example: Robot
Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaohu Qie, CS426, Fall98, Princeton University)
Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture
Inverse Kinematics

• What if animator knows position of “end-effector”?

\[X = (x, y) \]

(0,0)
Inverse Kinematics

• Animator specifies end-effector positions: \(X \)
• Computer finds joint angles: \(\Theta_1 \) and \(\Theta_2 \):

\[
\begin{align*}
\Theta_2 &= \cos^{-1}\left(\frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1l_2}\right) \\
\Theta_1 &= \frac{-(l_2 \sin(\Theta_2)x + (l_1 + l_2 \cos(\Theta_2))y}{(l_2 \sin(\Theta_2))y + (l_1 + l_2 \cos(\Theta_2))x}
\end{align*}
\]
Inverse Kinematics

- End-effector positions can be specified by spline curves.

\[X = (x, y) \]

\[\Theta_1 \]

\[\Theta_2 \]

\[(0,0) \]
Inverse Kinematics

- Problem for more complex structures
 - System of equations is usually under-constrained
 - Multiple solutions

\[
\begin{align*}
X &= (x, y) \\
\Theta_1, \Theta_2, \Theta_3 &\text{ Three unknowns: } \Theta_1, \Theta_2, \Theta_3 \\
x, y &\text{ Two equations: } x, y
\end{align*}
\]
Inverse Kinematics

• Solution for more complex structures:
 ◦ Find best solution (e.g., minimize energy in motion)
 ◦ Non-linear optimization
Example: Ball Boy

“Ballboy”

Fujito, Milliron, Ngan, & Sanocki
Princeton University
Kinematics

• Advantages
 ◦ Simple to implement
 ◦ Complete animator control

• Disadvantages
 ◦ Motions may not follow physical laws
 ◦ Tedious for animator

Lasseter '87
Kinematics

• Advantages
 ◦ Simple to implement
 ◦ Complete animator control

• Disadvantages
 ◦ Motions may not follow physical laws
 ◦ Tedious for animator

Lasseter ‘87
Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture
Dynamics

• Simulation of physics ensures realism of motion
Spacetime Constraints

• Animator specifies constraints:
 ◦ What the character’s physical structure is
 » e.g., articulated figure
 ◦ What the character has to do (keyframes)
 » e.g., jump from here to there within time t
 ◦ What other physical structures are present
 » e.g., floor to push off and land
 ◦ How the motion should be performed
 » e.g., minimize energy
Spacetime Constraints

• Computer finds the “best” physical motion satisfying constraints

• Example: particle with jet propulsion
 ◦ $x(t)$ is position of particle at time t
 ◦ $f(t)$ is force of jet propulsion at time t
 ◦ Particle’s equation of motion is:
 \[mx'' - f - mg = 0 \]
 ◦ Suppose we want to move from a to b within t_0 to t_1
 with minimum jet fuel:
 \[
 \text{Minimize } \int_{t_0}^{t_1} |f(t)|^2 \, dt \quad \text{subject to } x(t_0) = a \text{ and } x(t_1) = b
 \]

Witkin & Kass ‘88
Spacetime Constraints

• Solve with iterative optimization methods

Witkin & Kass `88
Spacetime Constraints

• Advantages:
 ◦ Free animator from having to specify details of physically realistic motion with spline curves
 ◦ Easy to vary motions due to new parameters and/or new constraints

• Challenges:
 ◦ Specifying constraints and objective functions
 ◦ Avoiding local minima during optimization
Spacetime Constraints

- Adapting motion:

Original Jump

Heavier Base

Witkin & Kass `88
Spacetime Constraints

• Adapting motion:

Hurdle

Witkin & Kass '88
Spacetime Constraints

- Adapting motion:

Ski Jump

Witkin & Kass ‘88
Spacetime Constraints

• Advantages:
 ○ Free animator from having to specify details of physically realistic motion with spline curves
 ○ Easy to vary motions due to new parameters and/or new constraints

• Challenges:
 ○ Specifying constraints and objective functions
 ○ Avoiding local minima during optimization
Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture
Motion Capture

- Measure motion of real characters and then simply “play it back” with kinematics
Motion Capture

• Measure motion of real characters and then simply “play it back” with kinematics

Captured Motion
Motion Capture

• Advantage:
 ◦ Physical realism

• Challenge:
 ◦ Animator control
Motion Capture

• Editing motion:
Motion Capture

• Motion graphs:

Motion 1

Motion 2

Motion 1

Motion 2

Kovacs & Gleicher
Motion Capture

- Motion graphs:

Kovacs & Gleicher
Motion Capture

• Retargeting motion:

Original motion data + constraints:

New character:

New motion data:
Motion Capture

• Retargeting motion:

Gleicher
Motion Capture

• Morphing motion:
Beyond Skeletons...

• Skinning
• Motion blur
Kinematic Skeletons

- Hierarchy of transformations ("bones")
 - Changes to parent affect all descendent bones

- So far: bones affect objects in scene or parts of a mesh
 - Equivalently, each point on a mesh acted upon by one bone
 - Leads to discontinuities when parts of mesh animated

- Extension: each point on a mesh acted upon by more than one bone
Linear Blend Skinning

• Each vertex of skin potentially influenced by all bones
 ◦ Normalized weight vector \(w^{(v)} \) gives influence of each bone transform
 ◦ When bones move, influenced vertices also move

• Computing a transformation \(T_v \) for a skinned vertex
 ◦ For each bone
 » Compute global bone transformation \(T_b \) from transformation hierarchy
 ◦ For each vertex
 » Take a linear combination of bone transforms
 » Apply transformation to vertex in original pose

\[
T_v = \sum_{b \in B} w^{(v)}(v) T_b
\]

• Equivalently, transformed vertex position is weighted combination of positions transformed by bones

\[
v_{\text{transformed}} = \sum_{b \in B} w^{(v)}(v)(T_b v)
\]
Assigning Weights: “Rigging”

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!
Beyond Skeletons…

• Skinning

• Motion blur
Temporal Aliasing

• Artifacts due to limited temporal resolution
 ◦ Strobing
 ◦ Flickering
Temporal Aliasing

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering
Temporal Aliasing

• Artifacts due to limited temporal resolution
 ◦ Strobing
 ◦ Flickering
Temporal Aliasing

• Artifacts due to limited temporal resolution
 ◦ Strobing
 ◦ Flickering
Motion Blur

- Composite weighted images of adjacent frames
 - Remove parts of signal under-sampled in time
Summary

• Kinematics
 ◦ Animator specifies poses (joint angles or positions) at keyframes and computer determines motion by kinematics and interpolation

• Dynamics
 ◦ Animator specifies physical attributes, constraints, and starting conditions and computer determines motion by physical simulation

• Motion capture
 ◦ Compute captures motion of real character and provides tools for animator to edit it