

Character Animation

COS 426

Syllabus

I. Image processing

- II. Modeling
- III. Rendering

IV. Animation

Image Processing (Rusty Coleman, CS426, Fall99)

Rendering (Michael Bostock, CS426, Fall99)

Modeling (Dennis Zorin, CalTech)

 Describing how 3D objects (& cameras) move over time

- Animation
 - Make objects change over time according to scripted actions

- Simulation / dynamics
 - Predict how objects change over time according to physical laws

Pixar

University of Illinois

- Challenge is balancing between ...
 - Animator control
 - Physical realism

Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture

Angel Plate 1

 Define character poses at specific time steps called "keyframes"

Lasseter `87

 Interpolate variables describing keyframes to determine poses for character in between

Lasseter `87

- Inbetweening:
 - Linear interpolation usually not enough continuity

H&B Figure 16.16

- Inbetweening:
 - Spline interpolation maybe good enough

DET SUP NUMINE

Articulated Figures

 Character poses described by set of rigid bodies connected by "joints"

Articulated Figures

• Well-suited for humanoid characters

Rose et al. '96

Articulated Figures

Animation focuses on joint angles

Forward Kinematics

Describe motion of articulated character

Forward Kinematics

- Animator specifies joint angles: Θ_1 and Θ_2
- Computer finds positions of end-effector: X

 $X = (l_1 \cos \Theta_1 + l_2 \cos(\Theta_1 + \Theta_2), l_1 \sin \Theta_1 + l_2 \sin(\Theta_1 + \Theta_2))$

Forward Kinematics

• Joint motions specified e.g. by spline curves

• Articulated figure:

DET SUR RUMINE

• Hip joint orientation:

• Knee joint orientation:

Example: Robot

Mihai Parparita, COS 426, Princeton University, 2003

Example: Ice Skating

(Mao Chen, Zaijin Guan, Zhiyan Liu, Xiaohu Qie, CS426, Fall98, Princeton University)

Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture

• What if animator knows position of "end-effector"?

- Animator specifies end-effector positions: X
- Computer finds joint angles: Θ_1 and Θ_2 :

End-effector postions can be specified by spline curves

- Problem for more complex structures
 - System of equations is usually under-constrained
 - Multiple solutions

- Solution for more complex structures:
 - Find best solution (e.g., minimize energy in motion)
 - Non-linear optimization

Example: Ball Boy

"Ballboy"

Fujito, Milliron, Ngan, & Sanocki Princeton University

Kinematics

- Advantages
 - Simple to implement
 - Complete animator control
- Disadvantages
 - Motions may not follow physical laws
 - Tedious for animator

Kinematics

- Advantages
 - Simple to implement
 - Complete animator control
- Disadvantages
 - Motions may not follow physical laws
 - Tedious for animator

Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture

Dynamics

Simulation of physics ensures realism of motion

Lasseter `87

Spacetime Constraints

- Animator specifies constraints:
 - What the character's physical structure is
 » e.g., articulated figure
 - What the character has to do (keyframes)
 » e.g., jump from here to there within time t
 - What other physical structures are present
 » e.g., floor to push off and land
 - How the motion should be performed
 - » e.g., minimize energy

Spacetime Constraints

- Computer finds the "best" physical motion satisfying constraints
- Example: particle with jet propulsion
 - **x**(t) is position of particle at time t
 - f(t) is force of jet propulsion at time t
 - Particle's equation of motion is:

$$mx''-f-mg=0$$

 Suppose we want to move from a to b within t₀ to t₁ with minimum jet fuel:

Minimize $\int_{t_0}^{t_1} |f(t)|^2 dt$ subject to $x(t_0) = a$ and $x(t_1) = b$ Witkin & Kass `88

 Solve with iterative optimization methods

Witkin & Kass `88

- Advantages:
 - Free animator from having to specify details of physically realistic motion with spline curves
 - Easy to vary motions due to new parameters and/or new constraints

Challenges:

- Specifying constraints and objective functions
- Avoiding local minima during optimization

Original Jump

Heavier Base

Witkin & Kass `88

• Adapting motion:

• Adapting motion:

Witkin & Kass `88

- Advantages:
 - Free animator from having to specify details of physically realistic motion with spline curves
 - Easy to vary motions due to new parameters and/or new constraints
- Challenges:
 - Specifying constraints and objective functions
 - Avoiding local minima during optimization

Character Animation Methods

- Keyframing / Forward Kinematics
- Inverse Kinematics
- Dynamics
- Motion capture

 Measure motion of real characters and then simply "play it back" with kinematics

 Measure motion of real characters and then simply "play it back" with kinematics

Captured Motion

Gleicher

- Advantage:
 Physical realism
- Challenge:
 - Animator control

• Editing motion:

• Motion graphs:

Kovacs & Gleicher

• Retargeting motion:

Original motion data + constraints:

New character:

New motion data:

Gleicher

• Retargeting motion:

• Morphing motion:

Beyond Skeletons...

- Skinning
- Motion blur

Kinematic Skeletons

- Hierarchy of transformations ("bones")
 - Changes to parent affect all descendent bones
- So far: bones affect objects in scene or parts of a mesh
 - Equivalently, each point on a mesh acted upon by one bone
 - Leads to discontinuities when parts of mesh animated
- Extension: each point on a mesh acted upon by more than one bone

Linear Blend Skinning

- Each vertex of skin potentially influenced by all bones
 - Normalized weight vector $w^{(v)}$ gives influence of each bone transform
 - When bones move, influenced vertices also move
- Computing a transformation T_v for a skinned vertex
 - For each bone
 - » Compute global bone transformation T_b from transformation hierarchy
 - For each vertex
 - » Take a linear combination of bone transforms
 - » Apply transformation to vertex in original pose

$$T_{v} = \sum_{b \in B} w_{b}^{(v)} T_{b}$$

 Equivalently, transformed vertex position is weighted combination of positions transformed by bones

$$v_{transformed} = \sum_{b \in B} w_b^{(v)} (T_b v)$$

Assigning Weights: "Rigging"

- Painted by hand
- Automatic: function of relative distances to nearest bones
 - Smoothness of skinned surface depends on smoothness of weights!

Beyond Skeletons...

- Skinning
- Motion blur

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

- Artifacts due to limited temporal resolution
 - Strobing
 - Flickering

Motion Blur

Composite weighted images of adjacent frames
 Remove parts of signal under-sampled in time

Summary

- Kinematics
 - Animator specifies poses (joint angles or positions) at keyframes and computer determines motion by kinematics and interpolation
- Dynamics
 - Animator specifies physical attributes, constraints, and starting conditions and computer determines motion by physical simulation
- Motion capture
 - Compute captures motion of real character and provides tools for animator to edit it