Lighting and Reflectance

COS 426

(

Ray Casting

{

for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {

image->SetPixel(1, j, radiance);
b
b

return image;

R2Image *RayCast(R3Scene *scene, int width, int height)

R2Image *1mage = new R2Image(width, height);

R3Ray ray = ConstructRayThroughPixel(scene->camera, 1, j);
R3Rgb radiance = ComputeRadiance(scene, &ray);

Without lllumination

J

-

Ray Casting

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = Computelntersection(scene, ray);
return ComputeRadiance(scene, ray, intersection);

With lllumination

-

lHlumination

- How do we compute radiance for a sample ray

once we know what it hits?

ComputeRadiance(scene, ray, intersection)

Angel Figure 6.2

J

-

Goal

- Must derive computer models for ...
o Emission at light sources
o Scattering at surfaces
o Reception at the camera

- Desirable features ...
o Concise
o Efficient to compute
o “Accurate”

-

Overview

* Direct lllumination
o Emission at light sources
o Scattering at surfaces

« Global illumination
o Shadows

o Refractions
o Inter-object reflections

e ey

Direct lllumination

Emission at Light Sources

- I (x%y,Z,0,p,M) ...

o describes the intensity of energy,
leaving a light source, ...
arriving at location(x,y,z), ...

from direction (6,9), ...
with wavelength A o (X}¥,2)

@)

0]

0]

o

Empirical Models

- Ideally measure irradiant energy for “all” situations
o TOO much storage
o Difficult in practice

-

OpenGL Light Source Models

‘%‘v“
MKB

- Simple mathematical models:
o Point light
o Spot light
o Directional light

\ /
ol

N~
-

Point Light Source

-y

+ Models omni-directional point source
o intensity (l,),

> position (py, Py, P),
o coefficients (c,, |,, q,) for attenuation with distance (d)

Point Light Source

I,

I, =
Yo +ld+qd’

* Physically-based: “inverse square law”
o c,=1,=0

- Use ¢, and [, = 0 for (non-physical) artistic effects

Directional Light Source

- Models point light source at infinity
o intensity (l,),
o direction (d,,d,,d,)

N\
(d,, d,, d,) X\

No attenuation \/

with distance [, =1,

Spot Light Source T

* Models point light source with direction
o intensity (l,),
o position (py, Py, P,),

o direction (d,, d,, d,)
attenuation with distance o
falloff (sd), and cutoff (sc) -

® =cos (L - D)
(P Pys P2) 4)

< A/SC [I,(cos ®)*

I, =3c +ld+qd’
0 otherwise

0]

o

1f ® < sc,

-
Cosine Lobes

‘(cos 0)" |

- Common model for “blob” at origin

1

k=1 ——
k=2 ——
k=4 ——
k=8 ——
08 I | k=16
| k=32
k=64 ——
'. k=128 ——
0.6
0.4 |
0.2
0
0 1.2 1.4

-

Overview

* Direct lllumination

o Scattering at surfaces

« Global illumination
o Shadows

o Refractions
o Inter-object reflections

Direct lllumination

Scattering at Surfaces

idirectional Reflectance Distribution Function
fr(eiaq)iaﬁovq)o»}“)
o describes the aggregate fraction of incident energy,
o arriving from direction (6,,9,), ...
o |leaving in direction (0,,¢,), --- yy
o with wavelength A

Empirical Models

|deally measure BRDF for “all” combinations of
angles: 0,¢.,,0,,9,

o Difficult in practice

o TOO much storage

-

Parametric Models

Approximate BRDF with simple parametric function
that is fast to compute.
o Phong [75]
o Blinn-Phong [77]
o Cook-Torrance [81]
o He et al. [91]
o Ward [92]
o Lafortune et al. [97]
o Ashikhmin et al. [00]
o etc.

OpenGL Reflectance Model

- Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +
o “ambient”

H
Based on model
proposed by Phong v\ /

2 o o

OpenGL Reflectance Model

- Simple analytic model:
o diffuse reflection +
o specular reflection +
o emission +
o “ambient”

H
Based on model
proposed by Phong v\ /

2 o o

Diffuse Reflection

- Assume surface reflects equally in all directions
o Examples: chalk, clay

Diffuse Reflection

- What is brightness of surface?
o Depends on angle of incident light

Diffuse Reflection

- What is brightness of surface?
o Depends on angle of incident light

dL =dAcos®

Diffuse Reflection

« Lambertian model
o cosine law (dot product)

[,=K,(N-L)I,

%’?
T

OpenGL Reflectance Model

- Simple analytic model:

o diffuse reflection +
\ H

o specular reflection +

o emission +
o “ambient”

Specular Reflection

» Reflection is strongest near mirror angle
o Examples: mirrors, metals

Specular Reflection

How much light is seen?

Depends on:
o angle of incident light
o angle to viewer H

Viewer

(Gerp~ e

(SO NUFINE)

Specular Reflection

* Phong Model
o (cos)" This is a (vaguely physically-motivated) hack!

Viewer

]S = KS(V'R)n]L

%’?
T

OpenGL Reflectance Model

- Simple analytic model:

o diffuse reflection +
\ H

o specular reflection +

o emission +
o “ambient”

[

Emission

Represents light emanating directly from surface

o Note: does not automatically act as light source!
Does not affect other surfaces in scene!

‘ Emission = 0 I

%’?
T

OpenGL Reflectance Model

- Simple analytic model:

o diffuse reflection +
\ H

o specular reflection +

o emission +
o “ambient”

-

Ambient Term

Represents reflection of all indirect illumination

This is a hack (avoids complexity of global illumination)!

J

%’?
T

OpenGL Reflectance Model

- Simple analytic model:

V2

2 o o

%’?
T

OpenGL Reflectance Model

- Simple analytic model:

Ny |
e 2

%“i
EE!W

OpenGL Reflectance Model

Sum diffuse, specular, emission, and ambient

Phong p,m.,-m“ pspccular plolal

o N &
&

¢,= 60’

A

OpenGL Reflectance Model

Good model for plastic surfaces, ...

%’?
T

Direct lllumination Calculation

Single light source:

[=1.+K I, +K,(N-L), +K,(V-R)"I,

%’?
T

Direct lllumination Calculation

Multiple light sources:

Note:
all of the
Kand/

are RGB
colors

l

I=1,+K,[1, + E(KD(N'Li)+KS(V'Ri)n)]L

L

-

Overview

« Global illumination
o Shadows
o Transmissions
o Inter-object reflections

Global lllumination

J

-

Global lllumination

Greg Ward

J

Ray Casting (last lecture)

Trace primary rays from camera
o Direct illumination from unblocked lights only

Light 'Ié
Shadow. @
Ray .

Light 2é

I=1,+K,1, + E(KD(N°L1')+KS(V°R1')”)IL

L

Shadows

Shadow term tells if light sources are blocked
o Cast ray towards each light source
o S, =0 if ray is blocked, S, = 1 otherwise

Light 1&

sr;‘aad;;®
\flewer """""""""" @ """ v ‘%

View ShadOW

Plane
A Term
Light 2é l

1 =[E +KA]AL +E(KD(NLZ)+KS(VRZ)H)SL]L

L

Recursive Ray Tracing

Also trace secondary rays from hit surfaces
o Mirror reflection and transparency

{—‘ @ L,

View
Light 2é

Plane
I=1,+K 1, + 3 (Ky(N-L)+Kg(V - R)")S, 1, +
L

Mirror reflections

Trace secondary ray in mirror direction

o Evaluate radiance along secondary ray and
include it into illumination model

Light 1@

Viewer @ a p .
"l Radiance
Plane for rT_]II‘rOr
é reflection ray
Light 2 l

I=I,+K 1, + Y (Ky(N-L)+K (V- R)")S, 1, + Kl + K, I,
L

Transparency

Trace secondary ray in direction of refraction

o Evaluate radiance along secondary ray and
include it into illumination model

@ Y

View
Plane

Radiance for
é refraction ray
Light 2

|

I=I,+K 1, + Y (Ky(N-L)+K (V- R)")S 1, + Kl + K, I,
L

Transparency

Transparency coefficient is fraction transmitted
o K; =1 for translucent object, K; = 0 for opaque
o 0 < K; <1 for object that is semi-translucent

@ Y

Plane Transparency
A Coefficient
Light 2 l

I=I,+K 1, + Y (Ky(N-L)+K (V- R)")S, 1, + Kl + K, I,
L

Refractive Transparency

For thin surfaces, can ignore change in direction
o Assume light travels straight through surface

Refractive Tranparency

For solid objects, apply Snell’s law:
nr Sin @r = 771' Sin @i

T = (ﬁcos(@i —cos(**),,)N—ﬁL
7, 7,

-

Recursive Ray Tracing

Ray tree represents illumination computation

Primary

Background

Ray traced through scene Ray tree

I=1,+K 1, + S Kp(N-L)+ KV -R)), 1, + Kl + K, I,
L

-

Recursive Ray Tracing

Ray tree represents illumination computation

Ray traced through scene Ray tree

I=1,+K 1, + S Kp(N-L)+ KV -R)), 1, + Kl + K, I,
L

Recursive Ray Tracing

TR

ComputeRadiance is called recursively

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray, R3Intersection& hit)
d
R3Ray specular ray = SpecularRay(ray, hit);
R3Ray refractive ray = RefractiveRay(ray, hit);
R3Rgb radiance = Phong(scene, ray, hit) +
Ks * ComputeRadiance(scene, specular ray) +
Kt * ComputeRadiance(scene, refractive ray);
return radiance;

Example

Turner Whitted, 1980

J

Summary

» Ray casting (direct lllumination)

o Usually use simple analytic approximations for
light source emission and surface reflectance

« Recursive ray tracing (global illumination)

o Incorporate shadows, mirror reflections,
and pure refractions

All of this is an approximation
so that it is practical to compute

More on global illumination next time! |

lllumination Terminology

Radiant power [flux] (®)
o Rate at which light energy is transmitted (in Watts).

Radiant Intensity (1)
o Power radiated onto a unit solid angle in direction (in Watts/sr)
» e.g.: energy distribution of a light source (inverse square law)

Radiance (L)

o Radiant intensity per unit projected surface area (in Watts/m2sr)
» e.g.: light carried by a single ray (no inverse square law)

Irradiance (E)
o Incident flux density on a locally planar area (in Watts/m?)
» e.g.: light hitting a surface at a point

Radiosity (B)

o Exitant flux density from a locally planar area (in Watts/m?)

