
Lighting and Reflectance!

COS 426!

R2Image *RayCast(R3Scene *scene, int width, int height)
{

 R2Image *image = new R2Image(width, height);
 for (int i = 0; i < width; i++) {
 for (int j = 0; j < height; j++) {
 R3Ray ray = ConstructRayThroughPixel(scene->camera, i, j);
 R3Rgb radiance = ComputeRadiance(scene, &ray);
 image->SetPixel(i, j, radiance);
 }
 }
 return image;

}

Ray Casting!

Without Illumination!

Ray Casting!
R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

 R3Intersection intersection = ComputeIntersection(scene, ray);
 return ComputeRadiance(scene, ray, intersection);

}

With Illumination!

Illumination!
•  How do we compute radiance for a sample ray 

once we know what it hits?!

Angel Figure 6.2

ComputeRadiance(scene, ray, intersection)

Goal!
•  Must derive computer models for ...!
  Emission at light sources!
  Scattering at surfaces!
  Reception at the camera!

•  Desirable features …!
  Concise!
  Efficient to compute!
  “Accurate”!

Overview!
•  Direct Illumination!
  Emission at light sources!
  Scattering at surfaces!

•  Global illumination!
  Shadows!
  Refractions!
  Inter-object reflections!

Direct Illumination!

Emission at Light Sources!
•  IL(x,y,z,θ,φ,λ) ... !
  describes the intensity of energy, !
  leaving a light source, …!
  arriving at location(x,y,z), ...!
  from direction (θ,φ), ...!
  with wavelength λ	

 (x,y,z)!

Light!

Empirical Models!
•  Ideally measure irradiant energy for “all” situations!
  Too much storage!
  Difficult in practice!

λ	

OpenGL Light Source Models!
•  Simple mathematical models:!
  Point light!
  Spot light!
  Directional light!

Point Light Source!
•  Models omni-directional point source!
  intensity (I0), !
  position (px, py, pz), !
  coefficients (ca, la, qa) for attenuation with distance (d)!

2
0I

dqdlc
I

aaa
L ++
=

d!

Light!

(px, py, pz) !

Point Light Source!

•  Physically-based: “inverse square law”!
  ca = la = 0

•  Use ca and la ≠ 0 for (non-physical) artistic effects!

2
0I

dqdlc
I

aaa
L ++
=

Directional Light Source!
•  Models point light source at infinity!
  intensity (I0), !
  direction (dx,dy,dz) !

0IIL =

(dx, dy, dz)!

No attenuation!
with distance!

Spot Light Source!
•  Models point light source with direction!
  intensity (I0), !
  position (px, py, pz), !
  direction (dx, dy, dz)!
  attenuation with distance!
  falloff (sd), and cutoff (sc)!

⎪⎩

⎪
⎨

⎧
≤Θ

++

Θ
=

otherwise0

,if)(cosI
2

0 sc
dqdlcI
aaa

sd

L

d!

(px, py, pz) !
D!

L! Θ = cos-1(L ⋅ D)

sc!

Cosine Lobes!

•  Common model for “blob” at origin!

k)(cosΘ

Overview!
•  Direct Illumination!
  Emission at light sources!
  Scattering at surfaces!

•  Global illumination!
  Shadows!
  Refractions!
  Inter-object reflections!

Direct Illumination!

Scattering at Surfaces!
Bidirectional Reflectance Distribution Function
fr(θi,φi,θo,φo,λ) ... !
  describes the aggregate fraction of incident energy, !
  arriving from direction (θi,φi), ...!
  leaving in direction (θo,φo), …!
  with wavelength λ!

Surface!

(θi,φi)

λ	

(θo,φo)

Empirical Models!
Ideally measure BRDF for “all” combinations of
angles: θi,φi,θo,φo!
  Difficult in practice!
  Too much storage!

Parametric Models!
Approximate BRDF with simple parametric function
that is fast to compute. !
  Phong [75]!
  Blinn-Phong [77]!
  Cook-Torrance [81]!
  He et al. [91]!
  Ward [92]!
  Lafortune et al. [97]!
  Ashikhmin et al. [00]!
  etc.!

Lafortune [97]

Cook-Torrance [81]

OpenGL Reflectance Model!
•  Simple analytic model: !
  diffuse reflection +!
  specular reflection +!
  emission +!
  “ambient”!

Surface!

Based on model!
proposed by Phong!

OpenGL Reflectance Model!
•  Simple analytic model: !
  diffuse reflection +!
  specular reflection +!
  emission +!
  “ambient”!

Surface!

Based on Phong !
illumination model!
Based on model!

proposed by Phong!

Diffuse Reflection!
•  Assume surface reflects equally in all directions!
  Examples: chalk, clay!

Surface!

Diffuse Reflection!
•  What is brightness of surface?!
  Depends on angle of incident light!

Surface!

θ!

Diffuse Reflection!
•  What is brightness of surface?!
  Depends on angle of incident light!

Surface!

dL!

Θ= cosdAdL

dA!

θ!

Diffuse Reflection!
•  Lambertian model!
  cosine law (dot product)!

LDD ILNKI)(⋅=

Surface!

N!
L!

θ!

OpenGL Reflectance Model!
•  Simple analytic model: !
  diffuse reflection +!
  specular reflection +!
  emission +!
  “ambient”!

Surface!

Specular Reflection!
•  Reflection is strongest near mirror angle!
  Examples: mirrors, metals!

N!

L!R! θ!θ!

Specular Reflection!
How much light is seen?!
Depends on: !
  angle of incident light!
  angle to viewer!

N!

L!R!

V!

Viewer!
α!

θ!θ!

Specular Reflection!
•  Phong Model!
  (cos α)n

L
n

SS IRVKI)(⋅=

N!

L!R!

V!

Viewer!
α!

θ!θ!

This is a (vaguely physically-motivated) hack!!

OpenGL Reflectance Model!
•  Simple analytic model: !
  diffuse reflection +!
  specular reflection +!
  emission +!
  “ambient”!

Surface!

Emission!
Represents light emanating directly from surface!
  Note: does not automatically act as light source! 

Does not affect other surfaces in scene!!

Emission ≠ 0!

OpenGL Reflectance Model!
•  Simple analytic model: !
  diffuse reflection +!
  specular reflection +!
  emission +!
  “ambient”!

Surface!

Ambient Term!

This is a hack (avoids complexity of global illumination)!!

Represents reflection of all indirect illumination!

OpenGL Reflectance Model!
•  Simple analytic model: !
  diffuse reflection +!
  specular reflection +!
  emission +!
  “ambient”!

Surface!

OpenGL Reflectance Model!
•  Simple analytic model: !
  diffuse reflection +!
  specular reflection +!
  emission +!
  “ambient”!

Surface!

OpenGL Reflectance Model!
Sum diffuse, specular, emission, and ambient!

Leonard McMillan, MIT

OpenGL Reflectance Model!
Good model for plastic surfaces, …!

Direct Illumination Calculation!
Single light source:!

L
n

SLDALAE IRVKILNKIKII)()(⋅+⋅++=

N!

L!R!

V!

Viewer!
α!

θ!θ!

Direct Illumination Calculation!
Multiple light sources:!

() L
L

n
iSiDALAE IRVKLNKIKII ∑ ⋅+⋅++=)()(

N!

L2!

V!

Viewer! L1! Note:  
all of the!
K and I  

are RGB
colors!

Overview!
•  Direct Illumination!
  Emission at light sources!
  Scattering at surfaces!

•  Global illumination!
  Shadows!
  Transmissions!
  Inter-object reflections!

Global Illumination!

Global Illumination!

Greg Ward

Ray Casting (last lecture)!
Trace primary rays from camera!
  Direct illumination from unblocked lights only!

() L
L

n
iSiDALAE IRVKLNKIKII ∑ ⋅+⋅++=)()(

Shadows!
Shadow term tells if light sources are blocked!
  Cast ray towards each light source!
  SL = 0 if ray is blocked, SL = 1 otherwise!

Shadow!
Term!

() LL
L

n
iSiDALAE ISRVKLNKIKII ∑ ⋅+⋅++=)()(

Recursive Ray Tracing!
Also trace secondary rays from hit surfaces!
  Mirror reflection and transparency!

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Mirror reflections!
Trace secondary ray in mirror direction!
  Evaluate radiance along secondary ray and  

include it into illumination model!

Radiance !
for mirror !

reflection ray!

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Transparency!
Trace secondary ray in direction of refraction!
  Evaluate radiance along secondary ray and  

include it into illumination model!

Radiance for !
refraction ray!

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Transparency!
Transparency coefficient is fraction transmitted!
  KT = 1 for translucent object, KT = 0 for opaque!
  0 < KT < 1 for object that is semi-translucent!

Transparency!
Coefficient!

Refractive Transparency!
For thin surfaces, can ignore change in direction!
  Assume light travels straight through surface!

N!

L!
Θi

T!
Θr

ηr!
ηi!

Θi

T! LT −≅

Refractive Tranparency!

N!

L!
Θi

T!
Θr

ηr!
ηi!

LNT
r

i
ri

r

i

η
η

η
η

−Θ−Θ=)coscos(

For solid objects, apply Snell’s law:!
iirr Θ=Θ sinsin ηη

Recursive Ray Tracing!
Ray tree represents illumination computation!

Ray traced through scene! Ray tree!

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Recursive Ray Tracing!
Ray tree represents illumination computation!

Ray traced through scene! Ray tree!

() TTRSLL
L

n
iSiDALAE IKIKISRVKLNKIKII ++⋅+⋅++= ∑)()(

Recursive Ray Tracing!
ComputeRadiance is called recursively!

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray, R3Intersection& hit)
{

 R3Ray specular_ray = SpecularRay(ray, hit);
 R3Ray refractive_ray = RefractiveRay(ray, hit);
 R3Rgb radiance = Phong(scene, ray, hit) +
 Ks * ComputeRadiance(scene, specular_ray) +

 Kt * ComputeRadiance(scene, refractive_ray);
 return radiance;

}

Example!

Turner Whitted, 1980!

Summary!
•  Ray casting (direct Illumination)!
  Usually use simple analytic approximations for  

light source emission and surface reflectance!

•  Recursive ray tracing (global illumination)!
  Incorporate shadows, mirror reflections,  

and pure refractions!

More on global illumination next time!!

All of this is an approximation!
so that it is practical to compute!

Illumination Terminology!
•  Radiant power [flux] (Φ) !
  Rate at which light energy is transmitted (in Watts).!

•  Radiant Intensity (I)!
  Power radiated onto a unit solid angle in direction (in Watts/sr)!

»  e.g.: energy distribution of a light source (inverse square law)!

•  Radiance (L)!
  Radiant intensity per unit projected surface area (in Watts/m2sr)!

»  e.g.: light carried by a single ray (no inverse square law)!

•  Irradiance (E)!
  Incident flux density on a locally planar area (in Watts/m2)!

»  e.g.: light hitting a surface at a point!

•  Radiosity (B)!
  Exitant flux density from a locally planar area (in Watts/m2)!

