Ray Tracing

COS 426

Ray Casting

* Primitive operation for one class of renderers:
o @Given a ray (origin, direction)
o Find point of first intersection with scene

- May return:
o Whether intersection occurs
o Point of intersection (x,y,z)
o Parameters of intersection on object

» Used for:
o Camera (primary) rays: backwards ray tracing
o Accumulate brightness from lights: forwards ray tracing
o Shadow rays
o Indirect illumination (path tracing)

Traditional (Backwards) Ray Tracing

TR

« The color of each pixel on the view plane
depends on the radiance emanating along rays
from visible surfaces in scene

Surfaces

-

Scene

« Scene has:
o Scene graph with surface primitives
o Set of lights
o Camera Light

struct R3Scene {
R3Node *root;
vector<R3Light *> lights;
R3Camera camera;
R3Box bbox;
R3Rgb background;
R3Rgb ambient;

bo Camera

Surfaces

Scene Graph

Scene graph is hierarchy of nodes, each with:
o Bounding box (in node’s coordinate system)
o Transformation (4x4 matrix)

> Shape (mesh, sphere, ... or null) [Base J
o Material (more on this later) /[M”\
[UpperArmJ
[M,]
[LowerArmJ T
[M;] It

/ -
‘ z
X4
/’A>X
z

N

Scene Graph

« Simple scene graph implementation:

struct R3Node {
struct R3Node *parent;
vector<struct R3Node *> children;

struct R3Shape {
R3Shape *shape;

R3 Matrb.(transformation; E; E}éip:gg]ﬁ? Pe;

R3Material *material; R3Sphere *sphere;

R3Box bbox; R3Cylinder *cylinder;
s R3Cone *cone;

R3Mesh *mesh;

Ray Casting

* For each sample (pixel) ...
o Construct ray from eye position through view plane

o Compute radiance leaving first point of intersection
between ray and scene

Surfaces

Camera

Ray Casting

- Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{
R2Image *image = new R2Image(width, height);
for (int 1 = 0; 1 < width; i++) {
for (int j = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, 1, j);
R3Rgb radiance = ComputeRadiance(scene, &ray);
image->SetPixel(1, j, radiance);
h
h

return 1mage;

Ray Casting

- Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
{
R2Image *image = new R2Image(width, height);
for (int 1 = 0; 1 < width; i++) {
for (int j = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, 1, j);
R3Rgb radiance = ComputeRadiance(scene, &ray);
image->SetPixel(1, j, radiance);
h
h

return image;

Constructing Ray Through a Pixel :%:

Constructing Ray Through a Pixel
- 2D Example

;)
[

O = frustum half-angle
d = distance to view plane

right = towards X up

(@)ue1,pyT

o

Q""" e, e, - - -

P1 =P, + d*towards — d*tan(®)*right
P2 =P, + d*towards + d*tan(®)*right

~
\

P =PI+ ((1+0.5)/width) * (P2 - PI)
V=(P-Py)/[P-P|
(d cancels out...)

Ray: P =P, +tV

Ray Casting

- Simple implementation:

R2Image *RayCast(R3Scene *scene, int width, int height)
d
R2Image *1image = new R2Image(width, height);
for (int 1 = 0; 1 < width; 1++) {
for (int j = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, 1, j);
R3Rgb radiance = ComputeRadiance(scene, &ray);
image->SetPixel(1, j, radiance);
h
h

return image;

-

Ray Casting

- Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = Computelntersection(scene, ray);
return ComputeRadiance(scene, ray, intersection);

struct R3Intersection {
bool hit;
R3Node *node;
R3Point position;
R3Vector normal;
double t;

Surfaces

-

Ray Casting

- Simple implementation:

R3Rgb ComputeRadiance(R3Scene *scene, R3Ray *ray)
{

R3Intersection intersection = Computelntersection(scene, ray);
return ComputeRadiance(scene, ray, intersection);

struct R3Intersection {
bool hit;
R3Node *node;
R3Point position;
R3Vector normal;
double t;

Surfaces

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
o Box
o Scene

« Ray Intersection Acceleration
o Bounding volumes

Uniform grids

Octrees

BSP trees

o

@)

0]

Ray Intersection

* Ray Intersection
» Sphere
o Triangle
o Box
o Scene

« Ray Intersection Acceleration
o Bounding volumes

Uniform grids

Octrees

BSP trees

o

@)

0]

Ray-Sphere Intersection

Ray-Sphere Intersection

Ray: P =P, +tV
Sphere:IP-0I2-r2=0

Ray-Sphere Intersection |
Ray: P =P, +tV
Sphere: [P - Ol*-r®=0 Algebraic Method

Substituting for P, we get:
IP,+tV-0I2-r2=0

Solve quadratic equation: P’
at? +bt+c=0 P~ —
where: v
a=1
b=2V - (P,-O) Po

P =P, +1V

Ray-Sphere Intersection i

Ray: P =P, +tV

P.Ol2.r2—
Sphere: IP - OIF-r==0 Geometric Method‘

L=0-P,

t,=LV
if (., <0)return O

d>=L-L-t,>?
if (d2>r2) return 0

t=t_ -t.andt_ +1t,.

P =Py +tV

Ray-Sphere Intersection

 Need normal vector at intersection
for lighting calculations

N =(P-0)/IIP-Oll

Ray Intersection

* Ray Intersection
o Sphere
» Triangle
o Box
o Scene

« Ray Intersection Acceleration
o Bounding volumes

Uniform grids

Octrees

BSP trees

o

@)

0]

Ray-Triangle Intersection

33
(Gerp~ e

{50 HUFINE) ®

Ray-Triangle Intersection

 First, intersect ray with plane

- Then, check if intersection point is inside triangle

Ray-Plane Intersection

Ray: P =P, +tV

Plane: PN +d=0 Algebraic Method

Substituting for P, we get:

(Po+tV) *N+d=0 %
Solution: D
t=-(Py*N+d)/(V+N)
P=P,+tV N
v -

Ray-Triangle Intersection |

» Check if point is inside triangle algebraically

For each side of triangle T,
V,=T,-P,
V,=T,—- P,
N,=V,xV,
Normalize N,
Plane p(P, N;)
if (SignedDistance(p, P) < 0)
return FALSE

end
return TRUE

Ray-Triangle Intersection li

» Check if point is inside triangle algebraically

For each side of triangle

V,=T,-P

Vo=T,-P

N,=V,xV,

Normalize N,

if (V+N,<O)

return FALSE

end T
return TRUE 1

T3

Ray-Triangle Intersection li

» Check if point is inside triangle algebraically

For each side of triangle T
V,=T,-P 3
Vo=T,-P
N,=V,xV,
Normalize N,
if (V+N,<O)

return FALSE
end

return TRUE

Ray-Triangle Intersection lli
« Check if point is inside triangle parametrically

“Barycentric coordinates” a, B, v: LE
P=oal;+pT, +yT,
whereo +p+y=1

o =Area(TT,P) /Area(T,T,T,)
B = Area(T,PT;) /Area(T,T,T,)
vy = Area(PT,T,) / Area(T,T,T,)

=1-a-p T,

Ray-Triangle Intersection lli
« Check if point is inside triangle parametrically

Compute “barycentric coordinates” a., : LE
o = Area(T,T,P) / Area(T,T,T5)
B =Area(T,PT;) /Area(T,T,T5)

Area(T,T,T,) =12 Il (T2-T1) x (T3-T1) Il
check if backfacing:

((T2-T1) x (T3-T1)) -N <O T
,

Check if point inside triangle. T
O<as<s1andO=p =<1 \ 2
andoa+f=1

Po

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
» Box
o Scene

« Ray Intersection Acceleration
o Bounding volumes

Uniform grids

Octrees

BSP trees

o

@)

0]

33
(Gerp~ e

{50 HUFINE) ®

Ray-Box Intersection

» Check front-facing sides for intersection with ray
and return closest intersection (least t)

(x2,y2)

Ray-Box Intersection

TR

» Check front-facing sides for intersection with ray
and return closest intersection (least t)

o Find intersection with plane
o Check if point is inside rectangle

(x2,y2)

(xLyl)

0 U

Ray-Box Intersection

TR

» Check front-facing sides for intersection with ray
and return closest intersection (least t)

o Find intersection with plane
o Check if point is inside rectangle

(x2,y2)

(xLyl)

0 U

Other Ray-Primitive Intersections

« Cone, cylinder:
o Similar to sphere
o Must also check end caps

« Convex polygon
o Same as triangle (check point-in-polygon algebraically)
o Or, decompose into triangles, and check all of them

 Mesh

o Compute intersection for all polygons
o Return closest intersection (least 1)

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
o Box
» Scene

« Ray Intersection Acceleration
o Bounding volumes

Uniform grids

Octrees

BSP trees

o

@)

0]

Ray-Scene Intersection

* Intuitive method
o Compute intersection for all nodes of scene graph
o Return closest intersection (least t)

Surfaces

Ray-Scene Intersection
» Scene graph is a DAG

o Traverse with recursion

Surfaces

Cylinder Box

Ray-Scene Intersection |

R3Intersection Computelntersection(R3Scene *scene, R3INode *node, R3Ray *ray)

{

/I Check for intersection with shape

shape intersection = Intersect node’s shape with ray

if (shape_intersection is a hit) closest intersection = shape intersection
else closest intersection = infinitely far miss

/I Check for intersection with children nodes
for each child node
// Check for intersection with child contents
child intersection = Computelntersection(scene, child, ray);
if (child intersection is a hit and is closer than closest intersection)
closest_intersection = child intersection;

// Return closest intersection in tree rooted at this node
return closest intersection

Ray-Scene Intersection

« Scene graph can have transformations

[Upper Arm]
[M,]

/N

I
[Lower Arm J T
[M;]

, /———>x
A
.:H .

\‘

*
‘ X4

/i,f>x
Z

Ray-Scene Intersection

Scene graph node can have transformations
o Transform (not primitives) by of M
o Intersect in coordinate system of node

o Transform intersection by M [Base J

AR
[

Upper Arm] T

\
M) |

7 N
[LowerArmJ T
[M;]

Ray-Scene Intersection li A

R3Intersection Computelntersection(R3Scene *scene, R3INode *node, R3Ray *ray)
{ /I Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node

Ray-Scene Intersection li A

R3Intersection Computelntersection(R3Scene *scene, R3INode *node, R3Ray *ray)
{ /I Transform ray by inverse of node’s transformation

// Check for intersection with shape

// Check for intersection with children nodes

// Transform intersection by node’s transformation

// Return closest intersection in tree rooted at this node

directions (including
ray direction and surface normal N)
must be transformed by ,/N
inverse transpose of M (or M-! for ray) \—

-

Ray Intersection

» Ray Intersection
o Sphere
o Triangle
o Box
o Scene

« Ray Intersection Acceleration
o Bounding volumes

Uniform grids

Octrees

BSP trees

(@)

@)

0]

-

Ray Intersection Acceleration

« What if there are a lot of nodes?

S

ZAN

http://www.3dm3.com

Bounding Volumes

« Check for intersection with
simple bounding volume first

33
(Gerp~ e

{50 HUFINE) ®

Bounding Volumes

« Check for intersection with bounding volume first

Bounding Volumes

{50 HUFINE) ®

« Check for intersection with bounding volume first

o If ray doesn’t intersect bounding volume,
then it can’t intersect its contents

Bounding Volumes

TR

« Check for intersection with bounding volume first

o If already found a primitive intersection closer than
Intersection with bounding box, then skip checking
contents of bounding box

%’?
EE!M

« Scene graph has hierarchy of bounding volumes
o Bounding volume of interior node contains all children

Bounding Volume Hierarchies

@ iiréz"'FE'_"""'i___lﬂ
RN N
AN Q)
ég%@®® a7 O
OA AOCQ ey

e

- Checking bounding volumes hierarchically (within
each node) can greatly accelerate ray intersection

Bounding Volume Hierarchies

Bounding Volume Hierarchies

®

R3Intersection Computelntersection(R3Scene *scene, R3Node *node, R3Ray *ray)

{

// Transform ray by inverse of node’s transformation
// Check for intersection with shape

// Check for intersection with children nodes
for each child node
// Check for intersection with child bounding box first
bbox intersection = Intersect child’s bounding box with ray
if (bbox intersection 1s a miss or further than closest intersection) continue

// Check for intersection with child contents

child intersection = Computelntersection(scene, child, ray);

if (child intersection is a hit and is closer than closest intersection)
closest intersection = child intersection;

// Transform intersection by node’s transformation
// Return closest intersection in tree rooted at this node

B
Yy:

Sort Bounding Volume Intersection

- Sort child bounding volume intersections and
then visit child nodes in front-to-back order

« Why?

Cache Node Intersections

* For each node, store closest child intersection
from previous ray and check that node first

Bounding Volumes

« Common primitives are:
o Axis-aligned bounding box
o Sphere

 What are the tradeoffs?

o Sphere has simple/efficient intersection code
o Bounding box is generally “tighter”

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
o Box
o Scene

« Ray Intersection Acceleration
o Bounding volumes
» Uniform grids
o QOctrees
o BSP trees

Uniform Grid

TR

« Construct uniform grid over scene
o Index primitives according to overlaps with grid cells

Uniform Grid

 Trace rays through grid cells
o Fast
o |Incremental

Only check primitives
In intersected grid cells

Uniform Grid

* Potential problem:
o How choose suitable grid resolution?

Too little benefit
iIf grid is too coarse

Too much cost
If grid is too fine

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
o Box
o Scene

« Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
» QOctrees
o BSP trees

Octree

TR

- Construct adaptive grid over scene
o Recursively subdivide box-shaped cells into 8 octants
o Index primitives by overlaps with cells

Generally fewer cells

Octree

- Trace rays through neighbor cells
o Fewer cells

Octree

T

 Or, check rays versus octree boxes hierarchically
o Computing octree boxes
while descending tree
o Sort eight boxes 5
front-to-back at each level |
o Check primitives/children |
Inside box

Ray Intersection

* Ray Intersection
o Sphere
o Triangle
o Box
o Scene

« Ray Intersection Acceleration
o Bounding volumes
o Uniform grids
o QOctrees
» BSP trees

Binary Space Partition (BSP) Tree

* Recursively partition space by planes

o BSP tree nodes store partition plane and
set of polygons lying on that partition plane

o Every part of every polygon lies on a partition plane

Binary Tree

Binary Space Partition (BSP) Tree

- Traverse nodes of BSP tree front-to-back
o Visit halfspace (child node) containing P,
o Intersect polygons lying on partition plane
o Visit halfspace (other child node) not containing P,

A A

Binary Tree

Binary Space Partition (BSP) Tree

®

R3Intersection
ComputeBSPIntersection(R3Ray *ray, BspNode *node, double min_t, double max t)

{

// Compute parametric value of ray-plane intersection
t = ray parameter for intersection with split plane of node
if (t<min_t) || (t <max_t)) return no intersection;

// Compute side of partition plane that contains ray start point

int side = (SignedDistance(node->plane, ray.Start()) <0) ? 0 : 1;
intersection] = ComputeBSPIntersection(ray, node->child[side], min_t, t);
if (intersectionl 1s a hit) return intersectionl;

intersection2 = ComputePolygonsIntersection(ray, node->polygons);

if (intersection? is a hit) return intersection2;

intersection3 = ComputeBSPIntersection(ray, node->child[1-side], t, max_t);
return intersection 3;

Other Accelerations

Screen space coherence — check > 1 ray at once
o Beam tracing
o Pencil tracing
o Cone tracing

Memory coherence
o Large scenes

o o [J [J [J /O
o o (o] (o] (o] o
o o OO0 \O
o o o (] (] o
o o oOX O : 0 \©o
o o o o o o
{ o o o (O \O
o o o o & o

o WTETITY
oé\.../o

Parallelism
o Ray casting is “embarrassingly parallelizable”

- etc.

Acceleration se

T

* Intersection acceleration techniques are important
o Bounding volume hierarchies
o Spatial partitions

- General concepts
o Sort objects spatially
o Make trivial rejections quick
o Perform checks hierarchically
o Utilize coherence when possible

Expected time is sub-linear in number of primitives

Summary

« Writing a simple ray casting renderer is easy
o Generate rays
o Intersection tests
o Lighting calculations

R2Image *RayCast(R3Scene *scene, int width, int height)
{
R2Image *image = new R2Image(width, height);
for (int 1 = 0; 1 < width; 1++) {
for (int j = 0; j < height; j++) {
R3Ray ray = ConstructRayThroughPixel(scene->camera, 1, j);
R3Rgb radiance = ComputeRadiance(scene, &ray);
image->SetPixel(i, j, radiance);
b
h

return image;

Heckbert’s Business Card Ray Tracer

{50 HUFINE) ®

 typedef struct{double x,y,z}vec;vec U,black,amb={.02,.02,.02};struct sphere{ vec cen,color;
double rad,kd,ks,kt,kl,ir}*s,*best,sph[]={0.,6.,.5,1.,1.,1.,.9, .05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5,.2,1.,
.7,3,0.,.05121.8.,-5,1,8,8,1.,.3,.7,0.,0.,1.23.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,
8,1.,1.,5.,0.,0.,0.,.5,1.5,};yx;double u,b,tmin,sqrt(),tan();double vdot(A,B)vec A ,B;{return A.x
*B.x+A.y*B.y+A.z*B.z;}vec vcomb(a,A,B)double a;vec A,B;{B.x+=a* A.x;B.y+=a*A.y;B.z+=a*A.z;
return B;}vec vunit(A)vec A;{return vcomb(1./sqrt(vdot(A,A)),A black);}struct sphere*intersect
(P,D)vec P,D;{best=0;tmin=1e30;s= sph+5;while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),
u=b*b-vdot(U,U)+s->rad*s ->rad,u=u>07sqrt(u):1e31,u=b-u>1e-7?b-u:b+u,tmin=u>=1e-7&&
u<tmin?best=s,u: tmin;return best;}vec trace(level,P,D)vec P,D;{double d,eta,e;vec N,color;
struct sphere®s,”l;if(!level--)return black;if(s=intersect(P,D));else return amb;color=amb;eta=
s->ir;d= -vdot(D,N=vunit(vcomb(-1.,P=vcomb(tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),
eta=1/eta,d= -d;|I=sph+5;while(l-->sph)if((e=I ->kI*vdot(N,U=vunit(vcomb(-1.,P,I->cen))))>0&&
intersect(P,U)==l)color=vcomb(e ,I->color,color);U=s->color;color.x*=U.x;color.y*=U.y;color.z
=U.z;e=1-eta” eta(1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(eta*d-
sgrt (e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(2*d,N,D)),vcomb(s->kd, color,vcomb
(s->kl,U,black))));}main(){printf("%d %d\n",32,32);while(yx<32*32) U.x=yx%32-32/2,U.z=32/2-
yx++/32,U.y=32/2/tan(25/114.5915590261),U=vcomb(255., trace(3,black,vunit(U)),black),printf
("%.0f %.0f %.0f\n",U);}*minray!*/

-

Next Time is lllumination!

Without lllumination With lllumination

