Sampling, Resampling,
and Warping

COS 426

~)

Digital Image Processing
- Changing intensity/color = Moving image locations
= Linear: scale, offset, etc. = Scale
= Nonlinear: gamma, = Rotate
saturation, etc. = Warp

= Add random noise o .
- Combining images

» Filtering over = Composite
neighborhoods = Morph
: glstrect edges Quantization
" Sharpen - Spatial / intensity
" Emboss tradeoff
= Median = Dithering

Digital Image Processing

When implementing operations that move pixels,
must account for the fact that digital images are
versions of continuous ones

‘%?
M

Sampling and Reconstruction

A
Continuous function

>

Sampling

Discrete samples
2 o

L

>

‘%?
M

Sampling and Reconstruction

t Continuous function
> .
R Sampling
. Discrete samples
L
N Reconstruction

Continuous function

N

>

/

Sampling and Reconstruction

Original
signal

l Sampling

Reconstruction

Reconstructed
signal

Figure 19.9 FvDFH

Sampling Theory

How many samples are enough?

o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

I Original function

/ Reconstructed function

/N

Jw/

Sampling Theory

What happens when we use too few samples?
high frequencies masquerade as low ones

Y

[

Sampling Theory

What happens when we use too few samples?
o Aliasing: high frequencies masquerade as low ones

i

s

Sampling Theory

What happens when we use too few samples?
o Aliasing: high frequencies masquerade as low ones

(Barely) adequate sampling

Sampling Theory

(0
SR RUMINE)

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Sampling Theory

(0
SR RUMINE)

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Sampling Theory

(0
SR RUMINE)

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Sampling Theory

(0
SR RUMINE)

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Sampling Theory

(0
SR RUMINE)

How many samples are enough to avoid aliasing?
o How many samples are required to represent
a given signal without loss of information?

o What signals can be reconstructed without loss
for a given sampling rate?

Spectral Analysis

« Spatial domain: - Frequency domain:
o Function: f(x) o Function: F(u)

o Filtering: convolution o Filtering: multiplication
7o) |F)

- - X <W’\v U

Any signal can be written as a
sum of periodic functions.

/

Fourier Transform

J @)

.

u

VI
v

vir

Sn T 1.5 2n

Figure 2.6 Wolberg

Fourier Transform

 Fourier transform:

F(u) = } f(x)e ™ dx

* |nverse Fourier transform:

£(x) = } F(u)e" ™ dy

Sampling Theorem

A signal can be reconstructed from its samples,
iff the original signal has no content >=
1/2 the sampling frequency - Shannon

- The minimum sampling rate for bandlimited
function is called the “Nyquist rate”

A signal is bandlimited if its
highest frequency is bounded.
The frequency is called the bandwidth.

Image Processing

- Consider reducing the image resolution

O OO0 O
(o)
O 00 O

D O 00O 0O OO OO OO OO OO O

O

O O O

OO OO OO OO OO OO OO OO O
OO OO OO OO OO OO OO OO O

D O 0O OO OO OO OO OO OO OO O
(o]

CEORORORON 0 /000 "0 00 0L OO OBOL0
(O O 00O 0 O OO

O OO0 OO 0O0DOOOOOOOOOOOOo

Original image 1/4 resolution

-

Image Processing

* Image processing is a resampling problem

Resampling

Sampling Theorem

A signal can be reconstructed from its samples,
iff the original signal has no content >=
1/2 the sampling frequency - Shannon

[Aliasing will occur if the signal is under-sampled]

AV

Under-sampling

Aliasing

SR RUMINE)

* In general:
o Artifacts due to under-sampling or poor reconstruction

 Specifically, in graphics:
o Spatial aliasing
o Temporal aliasing

AV

Under-sampling

/

Spatial Aliasing

Artifacts due to limited spatial resolution

-

Spatial Aliasing

Artifacts due to

imited spatial reso

ution

“Jaggies”

/

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering

/

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering

/

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering

/

Temporal Aliasing

Artifacts due to limited temporal resolution
o Strobing
o Flickering

aliasing

- Sample at higher rate
o Not always possible
o Doesn’t always solve the problem

to form bandlimited signal
o Use low-pass filter to limit signal to < 1/2 sampling rate
o Trades blurring for aliasing

Image Processing

1 Real world

Sample
Discrete samples (pixels)

\ 4

Reconstruct

Reconstructed function

\ 4

Transform

Transformed function

\

Filter
Bandlimited function

\ 4

Sample
Discrete samples (pixels)

\ 4

Reconstruct
1 Display

Image Processing

1 Real world

>

Continuous Function

Image Processing

Sample
l Discrete samples (pixels)

)

o

Discrete Samples

Image Processing

A

Reconstruct _/_/\/

l Reconstructed function

>

Reconstructed Function

Image Processing

A

A%V

Transform >
l Transformed function Transformed Function

Image Processing

A

— \o/

Bandlimited Function

>

Filter
l Bandlimited function

Image Processing

(o] o

b

Discrete samples

Sample
l Discrete samples (pixels)

Image Processing

Display

Reconstruct
1 Display

Ideal Bandlimiting Filter

* Frequency domain

0 fmax

« Spatial domain

5, i o . SlIl TTX
AT T T Sznc(x)=

Practical Image Processing

 Finite low-pass filters
o Point sampling (bad)
o Box filter
o Triangle filter
o Gaussian filter

1 Real world

Sample
Discrete samples (pixels)

\ 4

Reconstruct

Reconstructed function

v

Transform
Transformed function

v

Filter
Bandlimited function

A

Sample
Discrete samples (pixels)

v

Reconstruct

1 Display

-

Example: Scaling

- Resample with triangle or Gaussian filter

Original 1/4X
resolution

4X
resolution

-

General Image Warping

* Move pixels of an image

Source 1mage

. A
Destination image

-

General Image Warping

* |ssues:

o Specifying where every pixel goes (mapping)

. :'\ 2
“ o .5.\, :

4

‘ »
ey .
|
“.
<
“abh
s ™
’* |
_
= N
¥
—t‘
&>

@ 3

‘x

Source image

£

Destination image

J

-
General Image Warping

* Issues:
o Specifying where every pixel goes (mapping)
o Computing colors at destination pixels (resampling)

ooooéo’

.......
| #

.............

N
......

Source image Destination image

-

General Image Warping

* Issues:
» Specifying where every pixel goes (

mapping)

o Computing colors at destination pixels (resampling)

Source image Destination image

/

Two Options

* Forward mapping

Source image

* Reverse mapping

U P SR S SN

Source image

Destination image

-

Mapping

« Define transformation

o Describe the destination (x,y) for every source (u,v)
(actually vice-versa, if reverse mapping)

-

Parametric Mappings

+ Scale by factor:
o X = factor™ u
o y = factor™ v

-

Parametric Mappings

- Rotate by © degrees:
o X =UC0SO - vsSin®
o Yy = Uusin® + vcos®

.

Parametric Mappings

- Shear in X by factor:
o X =U+ factor™* v

oy=V Vv

Shear X

- Shearin Y by factor:
o X=U I

o y=V+factor*u Vv

Shear Y

-

Other Parametric Mappings

 Any function of u and v:
o X =f(u,v) -
o y =1, (u,v)

C0S426 Examples

Aditya Bhaskara Wei Xiang

More COS426 Examples

Sid Kapur

Eirik Bakke

Michael Oranato

-

Point Correspondence Mappings

N

- Mappings implied by correspondences:
o Ao A
o BeB
o CeoC’

-

N

‘%?
mbﬂmﬁ

Line Correspondence Mappings

- Beler & Neeley use pairs of lines to specify warp

Beier & Neeley

SIGGRAPH 92
J

-

Image Warping

* Issues:
o Specifying where every pixel goes (

mapping)

» Computing colors at destination pixels (resampling)

Source image Destination image

Image Warping

- Image warping requires resampling of image

Ml

A

>

Resampling

Point Sampling

» Possible (poor) resampling implementation:

float Resample(src, u, v, k, w) {
int iu = round(u) ;
int iv = round(v) ;
return src(iu,iv);

}

(iu,iv)o

(u;v) ° \f

T~ O(ix,iy)

Source 1mage Destination image

Point Sampling

* Use nearest sample

inn |

t t
Input Output

Point Sampling

Point Sampled: Aliasing! Correctly Bandlimited

Image Resampling Pipeline

* Ideal resampling
requires correct filtering
to avoid artifacts

- Reconstruction filter
especially important
when magnifying

- Bandlimiting filter
especially important
when minifying

l Real world
Sample

Discrete samples (pixels)

Reconstruct

| Reconstructed function

Transform

| Transformed function
Filter

| Bandlimited function

Sample

| Discrete samples (pixels)

Reconstruct

1 Display

Image Resampling Pipeline

* |n practice:
Resampling with
ow-pass filter

In order to reduce
aliasing artifacts
when minifying

Resampling
(Convolution with Filter)

1 Real world
Sample

l Discrete samples (pixels)

Reconstruct

| Reconstructed function

Transform

| Transformed function

Filter

| Bandlimited function

Sample

| Discrete samples (pixels)

Reconstruct

1 Display

Resampling with Filter

 Output is weighted average of inputs:

float Resample(src, u, v, k, w)
{
float dst = 0;
float ksum = 0;
int ulo = u - w,; el
for (int iu = ulo; iu < uhi; iu++) {
for (int iv = vlo; iv < vhi; iv++) {
dst += k(u,v,iu,iv,w) * src(u,v)
ksum += k(u,v,iu,iv,w);

}
} g

return dst / ksum; “‘-_1__\\J£QW)
}

Source image Destination image

Image Resampling

- Compute weighted sum of pixel neighborhood

o Qutput is weighted average of input, where
weights are normalized values of filter kernel (k)

dst(ix,iy) = 0;
for (1x = u-w; 1IXx <= utw; 1x++)
for (1y = v-w; 1y <= v+w; 1y++)
d = dist (ix,1y)<>(u,v)
dst(ix,1y) += k(ix,1y)*src(ix,1y);

k(ix,iy) represented by gray value

Image Resampling

- For isotropic Triangle and Gaussian filters,

K(ix,ly) is function of d and w

-W d w
Triangle filter

k(1,))=max(1 - d/w, 0)

Filter Width = 2

Image Resampling

- For isotropic Triangle and Gaussian filters,
K(ix,ly) is function of d and w
o Filter width chosen based on scale factor (or blur)

/\

-W w
Triangle filter

Width of filter
affects blurriness

Filter Width = 1

Gaussian Filtering

« Kernel is Gaussian function

-W %
Gaussian Function

* Drops off quickly, but
never gets to exactly 0

* In practice: compute
out to w ~ 2.50 or 30

(& AGET)

{50 HUFINE) ®

Image Resampling

- What if width (w) is smaller than sample spacing?

A

ISR

(u ,Vé W Triangle filter

Filter Width < 1

Image Resampling (with width < 1)

» Reconstruction filter: Bilinearly interpolate
four closest pixels
o a = linear interpolation of src(u,,v,) and src(u,,Vv.,)
o b = linear interpolation of src(u,,v;) and src(u,,v,)
o dst(x,y) = linear interpolation of “a” and “b”

(U1,V2)O 5 O(Uz’Vz)
()}
O O
(Uy,V4) b (UyVy)

Filter Width < 1

Image Resampling (with width < 1)

« Alternative: force width to be at least 1

Filter Width < 1

-

Putting it All Together

» Possible implementation of image blur:

Blur (src, dst, sigma) ({
w = 3*sigma;
for (int ix 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {
float u = ix;
float v = iy,

dst(ix,iy) = Resample(src,u,v,k,w);

A 4

Increasing sigma

Putting it All Together

» Possible implementation of image scale:

Scale(src, dst, sx, sy) {
w = max(l/sx,1/sy);
for (int ix = 0; ix < xmax; ix++) {
for (int iy = 0; iy < ymax; iy++) {
float u = ix / sx;
float v = iy / sy;
dst(ix,iy) = Resample(src,u,v,k,w);
}
}
}

B Tt ixiy)

Source image Destination image

Putting it All Together

- Possible implementation of image rotation:

Rotate (src, dst, O) {
w=1
for (int ix

= 0; ix < xmax; ix++) {
for (int iy =

0; iy < ymax; iy++) {

float u = ix*cos(-0) - iy*sin(-0);
float v = ix*sin(-0O) + iy*cos(-0);
dst(ix,iy) = Resample(src,u,v,k,w);

0000000
00000 Q--Q
0000000

Sampling Method Comparison

+ Trade-offs
o Aliasing versus blurring
o Computation speed

Gaussian

Forward vs. Reverse Mapping

* Reverse mapping:

Warp(src, dst) {
for (int ix = 0; ix < xmax; ix++) {
for (int 1y = 0; iy < ymax; iy++) {
float w 1 / scale(ix, iy);
float u = £ 1 (ix,iy);
float v = £ 1 (ix,iy);
dst (ix,iy) = (src,u,v,w);

nn @

O
(u,v) S N f

\O(ix,iy)

Source image Destination image

Forward vs. Reverse Mapping

» Forward mapping:

Warp(src, dst) {
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {
float x f . (iu,1iv);
float y f,(iu,iv);
float w 1 / scale(x, y);
(src(iu,iv) ,x,y,k,w);

Q

(iu,iv)

O\f \OOO (X,y)

O 0

Source image Destination image

Forward vs. Reverse Mapping

» Forward mapping:

Warp(src, dst) {
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {
float x f . (iu,1iv);
float y f,(iu,iv);
float w 1 / scale(x, y);
(src(iu,iv) ,x,y,k,w);

Q

oo — (X,Y)
0\\/%

Source image Destination image

Forward vs. Reverse Mapping

» Forward mapping:
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < wvmax; iv++) ({
= f_(iu,iv);
float y = £,(iu,iv);
~ 1 / scale(x, y);
for (int ix = xlo; ix <= xhi,; ix++) {
for (int iy = ylo; iy <= yhi; iy++) {
dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
}
}
}

Problem?, | ., Y

Destination image

Forward vs. Reverse Mapping

» Forward mapping:
for (int iu = 0; iu < umax; iu++) {
for (int iv = 0; iv < vmax; iv++) {

float x = £ _(iu,iv);

float y = £,(iu,iv);

float w = 1 / scale(x, y);

for (int ix = xlo; ix <= xhi,; ix++) {

for (int iy = ylo; iy <= yhi; iy++) {

dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
ksum(ix,iy) += k(x,y,ix,iy,w);

} :

Y AEESNON

for (ix = 0; ix < xmax; ix++) | N - I
for (iy = 0; iy < ymax; iy++)

dst(ix,iy) /= ksum(ix,iy) Deétiﬁatién imdge

Forward vs. Reverse Mapping

« Tradeoffs?

Forward vs. Reverse Mapping

 Tradeoffs:
o Forward mapping:
- Requires separate buffer to store weights

o Reverse mapping:

- Requires inverse of mapping function,
random access to original image

Summary

« Mapping
o Forward vs. reverse
o Parametric vs. correspondences

- Sampling, reconstruction, resampling
o Frequency analysis of signal content
o Filter to avoid undersampling: point, triangle, Gaussian
o Reduce visual artifacts due to aliasing

-

Next Time...

\

(o~ o)

(Ve RUMINE

- Changing intensity/color
» |inear: scale, offset, etc.

= Nonlinear: gamma,
saturation, etc.

= Add random noise

* Filtering over
neighborhoods
= Blur
= Detect edges
= Sharpen
= Emboss
= Median

Moving image locations
= Scale
= Rotate
= Warp

Combining images
= Composite
= Morph

Quantization

Spatial / intensity
tradeoff
= Dithering

