
Sampling, Resampling, 
and Warping"

COS 426!

Digital Image Processing"
•  Changing intensity/color!

  Linear: scale, offset, etc.!
  Nonlinear: gamma,

saturation, etc.!
  Add random noise!

•  Filtering over
neighborhoods!
  Blur!
  Detect edges!
  Sharpen!
  Emboss!
  Median!

•  Moving image locations!
  Scale!
  Rotate!
  Warp!

•  Combining images!
  Composite!
  Morph!

•  Quantization!
•  Spatial / intensity

tradeoff!
  Dithering!

Digital Image Processing"

When implementing operations that move pixels,
must account for the fact that digital images are
sampled versions of continuous ones!

Sampling and Reconstruction"

Sampling!

Continuous function

Discrete samples

Sampling and Reconstruction"

Sampling!

Reconstruction!

Continuous function

Discrete samples

Continuous function

Sampling and Reconstruction"

Figure 19.9 FvDFH

Sampling Theory"
How many samples are enough?!
  How many samples are required to represent 

a given signal without loss of information?!
  What signals can be reconstructed without loss 

for a given sampling rate?!

Reconstructed function

Original function

Sampling Theory"
What happens when we use too few samples?!
  Aliasing: high frequencies masquerade as low ones!

Figure 14.17 FvDFH

Sampling Theory"
What happens when we use too few samples?!
  Aliasing: high frequencies masquerade as low ones!

Sampling Theory"
What happens when we use too few samples?!
  Aliasing: high frequencies masquerade as low ones!

(Barely) adequate sampling

Inadequate sampling

Sampling Theory"
How many samples are enough to avoid aliasing?!
  How many samples are required to represent 

a given signal without loss of information?!
  What signals can be reconstructed without loss 

for a given sampling rate?!

Sampling Theory"
How many samples are enough to avoid aliasing?!
  How many samples are required to represent 

a given signal without loss of information?!
  What signals can be reconstructed without loss 

for a given sampling rate?!

Sampling Theory"
How many samples are enough to avoid aliasing?!
  How many samples are required to represent 

a given signal without loss of information?!
  What signals can be reconstructed without loss 

for a given sampling rate?!

Sampling Theory"
How many samples are enough to avoid aliasing?!
  How many samples are required to represent 

a given signal without loss of information?!
  What signals can be reconstructed without loss 

for a given sampling rate?!

Sampling Theory"
How many samples are enough to avoid aliasing?!
  How many samples are required to represent 

a given signal without loss of information?!
  What signals can be reconstructed without loss 

for a given sampling rate?!

Spectral Analysis"
•  Spatial domain:!
  Function: f(x)!
  Filtering: convolution!

•  Frequency domain:!
o  Function: F(u)!
o  Filtering: multiplication!

Any signal can be written as a !
sum of periodic functions.!

Fourier Transform"

Figure 2.6 Wolberg

Fourier Transform"
•  Fourier transform:!

•  Inverse Fourier transform:!

Sampling Theorem"

•  A signal can be reconstructed from its samples,  
iff the original signal has no content >= 
1/2 the sampling frequency - Shannon!

•  The minimum sampling rate for bandlimited
function is called the “Nyquist rate”!

A signal is bandlimited if its!
highest frequency is bounded.!

The frequency is called the bandwidth.!

Image Processing"
•  Consider reducing the image resolution!

Original image 1/4 resolution

Image Processing"

Resampling!

•  Image processing is a resampling problem!

Sampling Theorem"
•  A signal can be reconstructed from its samples,  

iff the original signal has no content >= 
1/2 the sampling frequency - Shannon!

Figure 14.17 FvDFH Under-sampling!

Aliasing will occur if the signal is under-sampled!

Aliasing"
•  In general:!
  Artifacts due to under-sampling or poor reconstruction!

•  Specifically, in graphics:!
  Spatial aliasing!
  Temporal aliasing!

Figure 14.17 FvDFH Under-sampling!

Spatial Aliasing"
Artifacts due to limited spatial resolution!

Spatial Aliasing"
Artifacts due to limited spatial resolution!

“Jaggies”

Temporal Aliasing"
Artifacts due to limited temporal resolution!
  Strobing!
  Flickering!

Temporal Aliasing"
Artifacts due to limited temporal resolution!
  Strobing!
  Flickering!

Temporal Aliasing"
Artifacts due to limited temporal resolution!
  Strobing!
  Flickering!

Temporal Aliasing"
Artifacts due to limited temporal resolution!
  Strobing!
  Flickering!

Antialiasing"
•  Sample at higher rate!
  Not always possible!
  Doesn’t always solve the problem!

•  Pre-filter to form bandlimited signal!
  Use low-pass filter to limit signal to < 1/2 sampling rate!
  Trades blurring for aliasing!

Image Processing"

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

Image Processing"

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

Continuous Function!

Image Processing"

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

Discrete Samples!

Image Processing"

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

Reconstructed Function!

Image Processing"

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

Transformed Function!

Image Processing"

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

Bandlimited Function!

Image Processing"

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

Discrete samples!

Image Processing"

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

Display!

Ideal Bandlimiting Filter"
•  Frequency domain!

•  Spatial domain!

Figure 4.5 Wolberg

0 fmax!

Practical Image Processing"
•  Finite low-pass filters!
  Point sampling (bad)!
  Box filter!
  Triangle filter!
  Gaussian filter!

Sample!

Real world

Reconstruct!

Discrete samples (pixels)

Transform!

Reconstructed function

Filter!

Transformed function

Sample!

Bandlimited function

Reconstruct!

Discrete samples (pixels)

Display

C
on

vo
lu

tio
n!

Example: Scaling"
•  Resample with triangle or Gaussian filter!

Original 1/4X
resolution

4X
resolution

General Image Warping"
•  Move pixels of an image!

Source image Destination image

Warp!

General Image Warping"
•  Issues:!
  Specifying where every pixel goes (mapping)!

Source image! Destination image!

Warp!

General Image Warping"
•  Issues:!
  Specifying where every pixel goes (mapping)!
  Computing colors at destination pixels (resampling)!

Source image! Destination image!

Warp!

General Image Warping"
•  Issues:!

 Specifying where every pixel goes (mapping)!
  Computing colors at destination pixels (resampling)!

Source image! Destination image!

Warp!

Two Options"
•  Forward mapping!

•  Reverse mapping!

Source image Destination image

(u,v)!
(ix,iy)!

f"

f"
(iu,iv)!

(x,y)!

Source image Destination image

Mapping"
•  Define transformation!
  Describe the destination (x,y) for every source (u,v) 

(actually vice-versa, if reverse mapping)!

v!

u!

y!

x!

Parametric Mappings"
•  Scale by factor:!
  x = factor * u!
  y = factor * v!

Scale!
0.8!

y!

x!

v!

u!

Parametric Mappings"
•  Rotate by Θ degrees:!
  x = ucosΘ - vsinΘ !
  y = usinΘ + vcosΘ !

Rotate!
30!

v!

u!

y!

x!

Parametric Mappings"
•  Shear in X by factor:!
  x = u + factor * v!
  y = v!

•  Shear in Y by factor:!
  x = u!
  y = v + factor * u!

Shear X!
1.3!

Shear Y!
1.3!

v!

u!

v!

u!

y!

x!

y!

x!

Other Parametric Mappings"
•  Any function of u and v:!
  x = fx(u,v)!
  y = fy(u,v)!

Fish-eye

“Swirl”

“Rain”

COS426 Examples"

Wei Xiang Aditya Bhaskara

More COS426 Examples"

Michael Oranato

Sid Kapur

Eirik Bakke

Point Correspondence Mappings"
•  Mappings implied by correspondences:!
  A ↔ A’!
  B ↔ B’!
  C ↔ C’!

A
A’

B B’

C’ C

Warp

Line Correspondence Mappings"
•  Beier & Neeley use pairs of lines to specify warp!

Beier & Neeley
SIGGRAPH 92

Image Warping"
•  Issues:!
  Specifying where every pixel goes (mapping)!
 Computing colors at destination pixels (resampling)!

Source image! Destination image!

Warp!

Image Warping"

Resampling!

•  Image warping requires resampling of image!

Point Sampling"
•  Possible (poor) resampling implementation:!

Source image Destination image

f"(u,v)!
(ix,iy)!

float Resample(src, u, v, k, w) {
 int iu = round(u);
 int iv = round(v);
 return src(iu,iv);
}

(iu,iv)!

Point Sampling"
•  Use nearest sample!

Input! Output!

Point Sampling"

Point Sampled: Aliasing! Correctly Bandlimited

Image Resampling Pipeline"
•  Ideal resampling  

requires correct filtering  
to avoid artifacts!

•  Reconstruction filter 
especially important 
when magnifying!

•  Bandlimiting filter 
especially important 
when minifying!

Sample!
Real world

Reconstruct!

Discrete samples (pixels)

Transform!
Reconstructed function

Filter!
Transformed function

Sample!
Bandlimited function

Reconstruct!
Discrete samples (pixels)

Display

Image Resampling Pipeline"
•  In practice: 

Resampling with 
low-pass filter 
in order to reduce  
aliasing artifacts 
when minifying!

Sample!
Real world

Reconstruct!

Discrete samples (pixels)

Transform!
Reconstructed function

Filter!
Transformed function

Sample!
Bandlimited function

Reconstruct!
Discrete samples (pixels)

Display

R
es

am
pl

in
g

 (C
on

vo
lu

tio
n

w
ith

 F
ilt

er
)

Resampling with Filter"
•  Output is weighted average of inputs:!

!!float Resample(src, u, v, k, w)
{
 float dst = 0;
 float ksum = 0;
 int ulo = u - w; etc.
 for (int iu = ulo; iu < uhi; iu++) {
 for (int iv = vlo; iv < vhi; iv++) {
 dst += k(u,v,iu,iv,w) * src(u,v)
 ksum += k(u,v,iu,iv,w);
 }
 }
 return dst / ksum;
}

Source image Destination image

f"(u,v)!
(ix,iy)!

Image Resampling"
•  Compute weighted sum of pixel neighborhood!
  Output is weighted average of input, where  

weights are normalized values of filter kernel (k)!

(u,v)!

k(ix,iy) represented by gray value

dst(ix,iy) = 0;
for (ix = u-w; ix <= u+w; ix++)
 for (iy = v-w; iy <= v+w; iy++)
 d = dist (ix,iy)↔(u,v)
 dst(ix,iy) += k(ix,iy)*src(ix,iy);

w

(ix,iy)!

d

Image Resampling"
•  For isotropic Triangle and Gaussian filters,  

k(ix,iy) is function of d and w!

(u,v)!

Filter Width = 2

Triangle filter

d

w w -w d

k(i,j)=max(1 - d/w, 0)

(ix,iy)!

Image Resampling"
•  For isotropic Triangle and Gaussian filters,  

k(ix,iy) is function of d and w!
  Filter width chosen based on scale factor (or blur)!

Filter Width = 1

Width of filter
affects blurriness

Triangle filter
w -w

w (u,v)!

Gaussian Filtering"
•  Kernel is Gaussian function!

!

(u,v)!
Gaussian Function

w -w

d

w≈3σ

)2/(22

),(σσ dedG −=

•  Drops off quickly, but
never gets to exactly 0
•  In practice: compute

out to w ~ 2.5σ or 3σ

Image Resampling"
•  What if width (w) is smaller than sample spacing?!

Filter Width < 1

Triangle filter
w -w

w (u,v)!

Image Resampling (with width < 1)"
•  Reconstruction filter: Bilinearly interpolate  

four closest pixels!
  a = linear interpolation of src(u1,v2) and src(u2,v2) !
  b = linear interpolation of src(u1,v1) and src(u2,v1)!
  dst(x,y) = linear interpolation of “a” and “b”!

(u1,v1)!

(u2,v2)!

(u2,v1)!

(u1,v2)!

(u,v)!

a

b
Filter Width < 1

Image Resampling (with width < 1)"
•  Alternative: force width to be at least 1!

Filter Width < 1

w = 1

Putting it All Together"
•  Possible implementation of image blur:!

!!

Increasing sigma

Blur(src, dst, sigma) {
 w ≈ 3*sigma;
 for (int ix = 0; ix < xmax; ix++) {
 for (int iy = 0; iy < ymax; iy++) {
 float u = ix;
 float v = iy;
 dst(ix,iy) = Resample(src,u,v,k,w);
 }
 }
}

Putting it All Together"
•  Possible implementation of image scale:!

!!Scale(src, dst, sx, sy) {
 w ≈ max(1/sx,1/sy);
 for (int ix = 0; ix < xmax; ix++) {
 for (int iy = 0; iy < ymax; iy++) {
 float u = ix / sx;
 float v = iy / sy;
 dst(ix,iy) = Resample(src,u,v,k,w);
 }
 }
}

Source image Destination image

(u,v)! f" (ix,iy)!

Putting it All Together"
•  Possible implementation of image rotation:!

!!Rotate(src, dst, Θ) {
 w ≈ 1
 for (int ix = 0; ix < xmax; ix++) {
 for (int iy = 0; iy < ymax; iy++) {
 float u = ix*cos(-Θ) – iy*sin(-Θ);
 float v = ix*sin(-Θ) + iy*cos(-Θ);
 dst(ix,iy) = Resample(src,u,v,k,w);
 }
 }
}

Rotate!
Θ!

v!

u!

y!

x!

Sampling Method Comparison"

Point! Triangle! Gaussian!

•  Trade-offs!
  Aliasing versus blurring!
  Computation speed!

Forward vs. Reverse Mapping"
•  Reverse mapping:!

!!Warp(src, dst) {
 for (int ix = 0; ix < xmax; ix++) {
 for (int iy = 0; iy < ymax; iy++) {
 float w ≈ 1 / scale(ix, iy);
 float u = fx-1(ix,iy);
 float v = fy-1(ix,iy);
 dst(ix,iy) = Resample(src,u,v,w);
 }
 }
}

Source image Destination image

(u,v)!
(ix,iy)!

f"

Forward vs. Reverse Mapping"
•  Forward mapping:!

!!Warp(src, dst) {
 for (int iu = 0; iu < umax; iu++) {
 for (int iv = 0; iv < vmax; iv++) {
 float x = fx(iu,iv);
 float y = fy(iu,iv);
 float w ≈ 1 / scale(x, y);
 Splat(src(iu,iv),x,y,k,w);
 }
 }
}
 f"

(iu,iv)!
(x,y)!

Source image Destination image

Forward vs. Reverse Mapping"
•  Forward mapping:!

!!Warp(src, dst) {
 for (int iu = 0; iu < umax; iu++) {
 for (int iv = 0; iv < vmax; iv++) {
 float x = fx(iu,iv);
 float y = fy(iu,iv);
 float w ≈ 1 / scale(x, y);
 Splat(src(iu,iv),x,y,k,w);
 }
 }
}

(iu,iv)! (x,y)!

Source image Destination image

Forward vs. Reverse Mapping"
•  Forward mapping:!

!!

Destination image

(x,y)!

for (int iu = 0; iu < umax; iu++) {
 for (int iv = 0; iv < vmax; iv++) {
 float x = fx(iu,iv);
 float y = fy(iu,iv);
 float w ≈ 1 / scale(x, y);
 for (int ix = xlo; ix <= xhi; ix++) {
 for (int iy = ylo; iy <= yhi; iy++) {
 dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
 }
 }
 }
}
 Problem?

Forward vs. Reverse Mapping"
•  Forward mapping:!

!!for (int iu = 0; iu < umax; iu++) {
 for (int iv = 0; iv < vmax; iv++) {
 float x = fx(iu,iv);
 float y = fy(iu,iv);
 float w ≈ 1 / scale(x, y);
 for (int ix = xlo; ix <= xhi; ix++) {
 for (int iy = ylo; iy <= yhi; iy++) {
 dst(ix,iy) += k(x,y,ix,iy,w) * src(iu,iv);
 ksum(ix,iy) += k(x,y,ix,iy,w);
 }
 }
 }
}
for (ix = 0; ix < xmax; ix++)
 for (iy = 0; iy < ymax; iy++)
 dst(ix,iy) /= ksum(ix,iy)

Destination image

(x,y)!

Forward vs. Reverse Mapping"
•  Tradeoffs?!

!!

Forward vs. Reverse Mapping"
•  Tradeoffs:!
  Forward mapping:!

-  Requires separate buffer to store weights 
!

  Reverse mapping:!
-  Requires inverse of mapping function, 

random access to original image!
!!

!

Summary"
•  Mapping!
  Forward vs. reverse!
  Parametric vs. correspondences !

•  Sampling, reconstruction, resampling!
  Frequency analysis of signal content!
  Filter to avoid undersampling: point, triangle, Gaussian!
  Reduce visual artifacts due to aliasing!

» Blurring is better than aliasing!

Next Time…"
•  Changing intensity/color!

  Linear: scale, offset, etc.!
  Nonlinear: gamma,

saturation, etc.!
  Add random noise!

•  Filtering over
neighborhoods!
  Blur!
  Detect edges!
  Sharpen!
  Emboss!
  Median!

•  Moving image locations!
  Scale!
  Rotate!
  Warp!

•  Combining images!
  Composite!
  Morph!

•  Quantization!
•  Spatial / intensity

tradeoff!
  Dithering!

