
Image Processing!

COS 426!

What is a Digital Image?!
A digital image is a discrete array of samples 
representing a continuous 2D function!

Continuous function Discrete samples

Limitations on Digital Images!
•  Spatial discretization!
•  Quantized intensity!
•  Approximate color (RGB)!
•  (Temporally discretized frames for digital video)!

Image Processing!
•  Changing intensity/color!

  Linear: scale, offset, etc.!
  Nonlinear: gamma,

saturation, etc.!
  Add random noise!

•  Filtering over
neighborhoods!
  Blur!
  Detect edges!
  Sharpen!
  Emboss!
  Median!

•  Moving image locations!
  Scale!
  Rotate!
  Warp!

•  Combining images!
  Composite!
  Morph!

Digital Image Processing!
•  Changing intensity/color!

  Linear: scale, offset, etc.!
  Nonlinear: gamma,

saturation, etc.!
  Add random noise!

•  Filtering over
neighborhoods!
  Blur!
  Detect edges!
  Sharpen!
  Emboss!
  Median!

•  Moving image locations!
  Scale!
  Rotate!
  Warp!

•  Combining images!
  Composite!
  Morph!

•  Quantization!
•  Spatial / intensity

tradeoff!
  Dithering!

Adjusting Brightness!
•  Simply scale pixel components!

o  Must clamp to range, e.g. [0..1] or [0..255]!

Original Brighter

Note: this is “contrast” on your monitor!!
“Brightness” adjusts black level (offset)!

Adjusting Contrast!
•  Compute mean luminance L for all pixels!

o  luminance = 0.30*r + 0.59*g + 0.11*b!

•  Scale deviation from L for each pixel component!
o  Must clamp to range (e.g., 0 to 1)!

Original More Contrast

L!

Digression: Perception of Intensity!
•  Perception of intensity is nonlinear!

Amount of light

Perceived
brightness

Modeling Nonlinear Intensity Response!
•  Brightness (B) usually modeled as a logarithm or

power law of intensity (I)!

•  Exact curve varies with ambient light, 
adaptation of eye!

3/1

log

IB
IkB

=

=

I

B

Cameras!
•  Original cameras based on Vidicon obey power

law for Voltage (V) vs. Intensity (I):!

45.0≈
=

γ

γIV

Vidicon tube [wikipedia.org]

CRT Response!
•  Power law for Intensity (I) vs. 

applied voltage (V)!

•  Vidicon + CRT = almost linear!!
•  Other displays (e.g. LCDs) contain electronics to

emulate this law!

5.2≈
=

γ

γVI

CRT [wikipedia.org]

CCD Cameras!
•  Camera gamma codified in NTSC standard!
•  CCDs have linear response to incident light!
•  Electronics to apply required power law!

•  So, pictures from most cameras (including digital
still cameras) will have γ = 0.45!

  sRGB standard: partly-linear, partly power-law curve
well approximated by γ = 1 / 2.2!

Digital Image Processing!
•  Changing intensity/color!

  Linear: scale, offset, etc.!
  Nonlinear: gamma,

saturation, etc.!
  Add random noise!

•  Filtering over
neighborhoods!
  Blur!
  Detect edges!
  Sharpen!
  Emboss!
  Median!

•  Moving image locations!
  Scale!
  Rotate!
  Warp!

•  Combining images!
  Composite!
  Morph!

•  Quantization!
•  Spatial / intensity

tradeoff!
  Dithering!

Basic Operation: Convolution!
Output value is weighted sum of values in
neighborhood of input image!

  Pattern of weights is the “filter” or “kernel”!

Input!

Filter!

Output!

Convolution with a Triangle Filter!

Input! Output!

Filter!
0.5

0.25 0.25

Convolution with a Triangle Filter!

Input! Output!

Filter!
0.5

0.25 0.25

Convolution with a Triangle Filter!
What if the filter runs off the end?!

Input! Output!

Filter!
0.5

0.25 0.25

Convolution with a Triangle Filter!
Common option: normalize the filter!

Input! Output!

0.67 Modified Filter!0.33

Convolution with a Gaussian Filter!

Input! Output!

Figure 2.4 Wolberg

Filter!

Linear Filtering!
2D Convolution!

o  Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter!

Input Image

Filter

Output Image

Linear Filtering!
2D Convolution!

o  Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter!

Input Image

Filter

Output Image

Linear Filtering!
2D Convolution!

o  Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter!

Input Image

Filter

Output Image

Linear Filtering!
2D Convolution!

o  Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter!

Input Image

Filter

Output Image

Linear Filtering!
2D Convolution!

o  Each output pixel is a linear combination of input pixels
in neighborhood with weights prescribed by a filter!

Input Image

Filter

Output Image

Blur!
Convolve with a filter whose entries sum to one!

o  Each pixel becomes a weighted average of its neighbors!

Original

Blur Filter =

Separable Filters!

Input! Output!

Filter!
0.5

0.25 0.25

Separate X & Y dimensions:!
o  Apply 1-D convolution across every row of image.!
o  Then repeat for every column of the image.!
o  What is the impact on performance?!

Remember our 1-D  
convolution…?!

Edge Detection!
Convolve with a filter that finds  
differences between neighbor pixels !

Original Detect edges

Filter =

Sharpen!
Sum detected edges with original image !

Original Sharpened

Filter =

Emboss!
Convolve with a filter that highlights 
gradients in particular directions!

Original Embossed

Filter =

Non-Linear Filtering!
Each output pixel is a non-linear function of 
input pixels in neighborhood (filter depends on input)!

Original Paint Stained Glass

Digital Image Processing!
•  Changing intensity/color!

  Linear: scale, offset, etc.!
  Nonlinear: gamma,

saturation, etc.!
  Add random noise!

•  Filtering over
neighborhoods!
  Blur!
  Detect edges!
  Sharpen!
  Emboss!
  Median!

•  Moving image locations!
  Scale!
  Rotate!
  Warp!

•  Combining images!
  Composite!
  Morph!

•  Quantization!
•  Spatial / intensity

tradeoff!
  Dithering!

Quantization!
Reduce intensity resolution!

o  Frame buffers have limited number of bits per pixel!
o  Physical devices have limited dynamic range!

Uniform Quantization!

P(x, y) = round(I(x, y))
 where round() chooses nearest
 value that can be represented.

I(x,y)

P(
x,

y)

P(x,y)
(2 bits per pixel)

I(x,y)

Uniform Quantization!

8 bits 4 bits 2 bits 1 bit

Notice contouring.!

Images with decreasing bits per pixel:!

Reducing Effects of Quantization!

•  Intensity resolution / spatial resolution tradeoff!

•  Dithering!
o  Random dither!
o  Ordered dither!
o  Error diffusion dither!

•  Halftoning!
o  Classical halftoning!

Dithering!
Distribute errors among pixels!

o  Exploit spatial integration in our eye!
o  Display greater range of perceptible intensities!

Uniform
Quantization

(1 bit)

Floyd-Steinberg
Dither
(1 bit)

Original
(8 bits)

Random Dither!
Randomize quantization errors!

o  Errors appear as noise!

P(x, y) = round(I(x, y) + noise(x,y))

I(x,y)

P(
x,

y)

I(x,y)
P(

x,
y)

Random Dither!

Uniform
Quantization

(1 bit)

Random
Dither
(1 bit)

Original
(8 bits)

Ordered Dither!
Pseudo-random quantization errors!

o  Matrix stores pattern of threshholds!

i = x mod n
j = y mod n
e = I(x,y) - trunc(I(x,y))
threshold = (D(i,j)+1)/(n2+1)
if (e > threshold)

 P(x,y) = ceil(I(x, y))
else

 P(x,y) = floor(I(x,y))

0 1 1/5 2/5 3/5 4/5

thresholds

Ordered Dither!
Bayer’s ordered dither matrices!

Ordered Dither!

Random
Dither
(1 bit)

Original
(8 bits)

Ordered
Dither
(1 bit)

Error Diffusion Dither!
Spread quantization error over neighbor pixels!

o  Error dispersed to pixels right and below!
o  Floyd-Steinberg weights:!

Figure 14.42 from H&B

3/16 + 5/16 + 1/16 + 7/16 = 1.0!

Error Diffusion Dither!

Random
Dither
(1 bit)

Original
(8 bits)

Ordered
Dither
(1 bit)

Floyd-Steinberg
Dither
(1 bit)

Classical Halftoning!

From Town Topics, Princeton

Classical Halftoning!
Use ink dots of varying size to represent intensities!

o  Area of dots proportional to intensity in image!
o  Digital halftoning uses matrices (like ordered dither)!

P(x,y) I(x,y)

Summary!
•  Image filtering!

o  Compute new values for image pixels based on  
function of old values !

•  Halftoning and dithering!
o  Reduce visual artifacts due to quantization!
o  Distribute errors among pixels!

» Exploit spatial integration in our eye!

Next Time…!
•  Changing intensity/color!

  Linear: scale, offset, etc.!
  Nonlinear: gamma,

saturation, etc.!
  Add random noise!

•  Filtering over
neighborhoods!
  Blur!
  Detect edges!
  Sharpen!
  Emboss!
  Median!

•  Moving image locations!
  Scale!
  Rotate!
  Warp!

•  Combining images!
  Composite!
  Morph!

•  Quantization!
•  Spatial / intensity

tradeoff!
  Dithering!

