

Image Processing

COS 426

What is a Digital Image?

A digital image is a discrete array of samples representing a continuous 2D function

Continuous function

Discrete samples

Limitations on Digital Images

- Spatial discretization
- Quantized intensity
- Approximate color (RGB)
- (Temporally discretized frames for digital video)

Image Processing

- Changing intensity/color
 Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- - Scale
 - Rotate
 - Warp
 - Combining images ullet
 - Composite
 - Morph

Digital Image Processing

- Changing intensity/color Moving image locations
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Scale
- Rotate
- Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity
 tradeoff
 - Dithering

Adjusting Brightness

Simply scale pixel components

 Must clamp to range, e.g. [0..1] or [0..255]

Original

Brighter

Note: this is "contrast" on your monitor! "Brightness" adjusts black level (offset)

Adjusting Contrast

- Compute mean luminance L for all pixels
 o luminance = 0.30*r + 0.59*g + 0.11*b
- Scale deviation from L for each pixel component o Must clamp to range (e.g., 0 to 1)

Original

More Contrast

Digression: Perception of Intensity

Perception of intensity is nonlinear

Modeling Nonlinear Intensity Response

 Brightness (B) usually modeled as a logarithm or power law of intensity (I)

B

$$B = k \log I$$
$$B = I^{1/3}$$

Cameras

 Original cameras based on Vidicon obey power law for Voltage (V) vs. Intensity (I):

$$V = I^{\gamma}$$
$$\gamma \approx 0.45$$

Vidicon tube [wikipedia.org]

CRT Response

Power law for Intensity (*I*) vs.
 applied voltage (*V*)

$$I = V^{\gamma}$$
$$\gamma \approx 2.5$$

CRT [wikipedia.org]

- Vidicon + CRT = almost linear!
- Other displays (e.g. LCDs) contain electronics to emulate this law

CCD Cameras

- Camera gamma codified in NTSC standard
- CCDs have linear response to incident light
- Electronics to apply required power law

- So, pictures from most cameras (including digital still cameras) will have $\gamma = 0.45$
 - sRGB standard: partly-linear, partly power-law curve well approximated by $\gamma = 1 / 2.2$

Digital Image Processing

- Changing intensity/color
 Moving image locations
 - Linear: scale, offset, etc.Scale
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Rotate
- Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 - Dithering

DET GUE NOTINE

Basic Operation: Convolution

Output value is weighted sum of values in neighborhood of input image

Pattern of weights is the "filter" or "kernel"

Convolution with a Triangle Filter

What if the filter runs off the end?

Input

Output

2D Convolution

2D Convolution

2D Convolution

2D Convolution

2D Convolution

Blur

Convolve with a filter whose entries sum to one o Each pixel becomes a weighted average of its neighbors

Separate X & Y dimensions:

- o Apply 1-D convolution across every row of image.
- o Then repeat for every column of the image.
- o What is the impact on performance?

Edge Detection

Convolve with a filter that finds differences between neighbor pixels

Original

Filter =
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & +8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Sharpen

Sum detected edges with original image

Original

Sharpened

Filter =
$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & +9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Emboss

Convolve with a filter that highlights gradients in particular directions

Original

Embossed

Filter =
$$\begin{bmatrix} -1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Non-Linear Filtering

Each output pixel is a non-linear function of input pixels in neighborhood (filter depends on input)

Original

Paint

Stained Glass

Digital Image Processing

- Changing intensity/color
 Moving image locations
 - Linear: scale, offset, etc.
 Scale
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Rotate
- Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity tradeoff
 - Dithering

Quantization

Reduce intensity resolution

- o Frame buffers have limited number of bits per pixel
- o Physical devices have limited dynamic range

Uniform Quantization

Images with decreasing bits per pixel:

Reducing Effects of Quantization

- Intensity resolution / spatial resolution tradeoff
- Dithering
 - o Random dither
 - o Ordered dither
 - o Error diffusion dither
- Halftoning
 - o Classical halftoning

Dithering

Distribute errors among pixels

- o Exploit spatial integration in our eye
- o Display greater range of perceptible intensities

Original (8 bits)

Uniform Quantization (1 bit)

Floyd-Steinberg Dither (1 bit)

Random Dither

Randomize quantization errors o Errors appear as noise

P(x, y) = round(I(x, y) + noise(x, y))

Random Dither

Original (8 bits)

Uniform Quantization (1 bit)

Random Dither (1 bit)

Ordered Dither

Pseudo-random quantization errors

o Matrix stores pattern of threshholds

$$i = x \mod n$$

$$j = y \mod n$$

$$e = I(x,y) - trunc(I(x,y))$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 1 & 1 \\ 0$$

Ordered Dither

Bayer's ordered dither matrices

$$D_{n} = \begin{bmatrix} 4D_{n/2} + D_{2}(1,1)U_{n/2} & 4D_{n/2} + D_{2}(1,2)U_{n/2} \\ 4D_{n/2} + D_{2}(2,1)U_{n/2} & 4D_{n/2} + D_{2}(2,2)U_{n/2} \end{bmatrix}$$

$$D_2 = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \qquad D_4 = \begin{bmatrix} 15 & 7 & 13 & 5 \\ 3 & 11 & 1 & 9 \\ 12 & 4 & 14 & 6 \\ 0 & 8 & 2 & 10 \end{bmatrix}$$

Ordered Dither

Original (8 bits)

Random Dither (1 bit)

Ordered Dither (1 bit)

Error Diffusion Dither

Spread quantization error over neighbor pixels o Error dispersed to pixels right and below o Floyd-Steinberg weights:

3/16 + 5/16 + 1/16 + 7/16 = 1.0

Figure 14.42 from H&B

Error Diffusion Dither

Original (8 bits)

Random Dither (1 bit)

Ordered Dither (1 bit)

Floyd-Steinberg Dither (1 bit)

Classical Halftoning

From Town Topics, Princeton

Classical Halftoning

Use ink dots of varying size to represent intensities

- o Area of dots proportional to intensity in image
- o Digital halftoning uses matrices (like ordered dither)

• •

Summary

Image filtering

o Compute new values for image pixels based on function of old values

- Halftoning and dithering
 - o Reduce visual artifacts due to quantization
 - o Distribute errors among pixels
 - » Exploit spatial integration in our eye

Next Time...

- Changing intensity/color Mov
 - Linear: scale, offset, etc.
 - Nonlinear: gamma, saturation, etc.
 - Add random noise
- Filtering over neighborhoods
 - Blur
 - Detect edges
 - Sharpen
 - Emboss
 - Median

- Moving image locations
 - Scale
 - Rotate
 - Warp
- Combining images
 - Composite
 - Morph
- Quantization
- Spatial / intensity
 tradeoff
 - Dithering