Longest increasing subsequence

Longest increasing subsequence. Given a sequence of elements $c_1, c_2, ..., c_n$ from a totally-ordered universe, find the longest increasing subsequence.

Ex. 7 2 8 1 3 4 10 6 9 5.

/ Maximum Unique Match finder

Application. Part of MUMmer system for aligning entire genomes.

 $O(n^2)$ dynamic programming solution. LIS is a special case of edit-distance.

- $x = c_1 c_2 \cdots c_n$.
- y = sorted sequence of c_k , removing any duplicates.
- Mismatch penalty = ∞ ; gap penalty = 1.

Patience solitaire

Patience. Deal cards $c_1, c_2, ..., c_n$ into piles according to two rules:

- Can't place a higher-valued card onto a lowered-valued card.
- · Can form a new pile and put a card onto it.

Goal. Form as few piles as possible.

Patience: greedy algorithm

Greedy algorithm. Place each card on leftmost pile that fits.

Patience: greedy algorithm

Greedy algorithm. Place each card on leftmost pile that fits.

Observation. At any stage during greedy algorithm, top cards of piles increase from left to right.

2

.

Patience-LIS: weak duality

Weak duality. In any legal game of patience, the number of piles \geq length of any increasing subsequence.

Pf.

- · Cards within a pile form a decreasing subsequence.
- Any increasing sequence can use at most one card from each pile.

Greedy algorithm: implementation

Theorem. The greedy algorithm can be implemented in $O(n \log n)$ time.

- Use *n* stacks to represent *n* piles.
- Use binary search to find leftmost legal pile.

PATIENCE $(n, c_1, c_2, ..., c_n)$ INITIALIZE an array of n empty stacks $S_1, S_2, ..., S_n$.

FOR i = 1 TO n $S_j \leftarrow$ binary search to find leftmost stack that fits c_i .

PUSH (S_j, c_i) . $pred[c_i] \leftarrow PEEK(S_{j-1})$. \leftarrow null if j = 1RETURN sequence formed by following pointers from top card of rightmost nonempty stack.

Patience-LIS: strong duality

Theorem. [Hammersley 1972] Min number of piles = max length of an IS; moreover greedy algorithm finds both.

Pf. Each card maintains a pointer to top card in previous pile.

- Follow pointers to obtain IS whose length equals the number of piles.
- By weak duality, both are optimal. •

Patience sorting

Patience sorting. Deal all cards using greedy algorithm; repeatedly remove smallest card.

Theorem. For uniformly random deck, the expected number of piles is approximately $2 n^{1/2}$ and the standard deviation is approximately $n^{1/6}$.

Remark. An almost-trivial $O(n^{3/2})$ sorting algorithm.

Speculation. [Persi Diaconis] Patience sorting is the fastest way to sort a pile of cards by hand.

8

Bonus theorem

Theorem. [Erdös-Szekeres 1935] Any sequence of $n^2 + 1$ distinct real numbers either has an increasing or decreasing subsequence of size n + 1.

Pf. [by pigeonhole principle]

