
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Mar 31, 2013 3:25 PM

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

"Free world" goal. Cut supplies (if cold war turns into real war).

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

Soviet rail network (1950s)

2

Reference: On the history of the transportation and maximum flow problems.

Alexander Schrijver in Math Programming, 91: 3, 2002.

Max-flow and min-cut are widely applicable problem-solving model.

・Data mining.

・Open-pit mining.

・Bipartite matching.

・Network reliability.

・Baseball elimination.

・Image segmentation.

・Network connectivity.

・Distributed computing.

・Security of statistical data.

・Egalitarian stable matching.

・Network intrusion detection.

・Multi-camera scene reconstruction.

・Sensor placement for homeland security.

・Many, many, more.

Max-flow and min-cut applications

3

liver and hepatic vascularization segmentation

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

5

Def. Given an undirected graph G = (V, E) a subset of edges M ⊆ E is
a matching if each node appears in at most one edge in M.

Max matching. Given a graph, find a max cardinality matching.

Matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets

L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G = (L ∪ R, E), find a max

cardinality matching.

6

Bipartite matching

RL

1

2

3

4

5

1'

2'

3'

4'

5'

matching: 1-2', 3-1', 4-5'

Def. A graph G is bipartite if the nodes can be partitioned into two subsets

L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph G = (L ∪ R, E), find a max

cardinality matching.

7

Bipartite matching

RL

1

2

3

4

5

1'

2'

3'

4'

5'

matching: 1-1', 2-2', 3-4', 4-5'

8

・Create digraph G' = (L ∪ R ∪ {s, t}, E').

・Direct all edges from L to R, and assign infinite (or unit) capacity.

・Add source s, and unit capacity edges from s to each node in L.

・Add sink t, and unit capacity edges from each node in R to t.

Bipartite matching: max flow formulation

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

R

G'

L

9

Theorem. Max cardinality of a matching in G = value of max flow in G'.
Pf. ≤

・Given a max matching M of cardinality k.

・Consider flow f that sends 1 unit along each of k paths.

・f is a flow, and has value k. ▪

Max flow formulation: proof of correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

G'G

1

3

5

1'

3'

5'

2

4

2'

4'

10

Theorem. Max cardinality of a matching in G = value of max flow in G'.
Pf. ≥

・Let f be a max flow in G' of value k.

・Integrality theorem ⇒ k is integral and can assume f is 0-1.

・Consider M = set of edges from L to R with f (e) = 1.

- each node in L and R participates in at most one edge in M
- | M | = k: consider cut (L ∪ s, R ∪ t) ▪

Max flow formulation: proof of correctness

s

1

3

5

1'

3'

5'

t

2

4

2'

4'

1 1

∞

GG'

1

3

5

1'

3'

5'

2

4

2'

4'

11

Def. Given a graph G = (V, E) a subset of edges M ⊆ E is a perfect matching

if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

Structure of bipartite graphs with perfect matchings.

・Clearly we must have | L | = | R |.

・What other conditions are necessary?

・What conditions are sufficient?

Perfect matching in a bipartite graph

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes

adjacent to nodes in S.

Observation. If a bipartite graph G = (L ∪ R, E) has a perfect matching,

then | N(S) | ≥ | S | for all subsets S ⊆ L.

Pf. Each node in S has to be matched to a different node in N(S). ▪

12

Perfect matching in a bipartite graph

1

2

3

4

5

1'

2'

3'

4'

5'

S = { 2, 4, 5 }
N(S) = { 2', 5' }

2

4

5

2'

5'

no perfect matching

13

Theorem. Let G = (L ∪ R, E) be a bipartite graph with | L | = | R |.
G has a perfect matching iff | N(S) | ≥ | S | for all subsets S ⊆ L.

Pf. ⇒ This was the previous observation.

Hall's theorem

1

2

3

4

5

1'

2'

3'

4'

5'

S = { 2, 4, 5 }
N(S) = { 2', 5' }

2

4

5

2'

5'

no perfect matching

Pf. ⇐ Suppose G does not have a perfect matching.

・Formulate as a max flow problem and let (A, B) be min cut in G'.

・By max-flow min-cut theorem, cap(A, B) < | L |.

・Define LA = L ∩ A, LB = L ∩ B , RA = R ∩ A.

・cap(A, B) = | LB | + | RA |.

・Since min cut can't use ∞ edges: N(LA) ⊆ RA.

・| N(LA) | ≤ | RA | = cap(A, B) – | LB | < | L | – | LB | = | LA |.

・Choose S = LA . ▪

5

4

14

Proof of Hall's theorem

s

1

3

1'

3'

5' t

2

4'

2'

LA = {2, 4, 5}
LB = {1, 3}
RA = {2', 5'}
N(LA) = {2', 5'}

1
∞

1

1

1

A

∞G'

∞

15

Theorem. The Ford-Fulkerson algorithm solves the bipartite matching

problem in O(m n) time.

Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be

solved in O(m n1/2) time.

Bipartite matching running time

SIAM J. COMPUT.
Vol. 2, No. 4, December 1973

ANns/2 ALGORITHM FOR MAXIMUM MATCHINGS
IN BIPARTITE GRAPHS*

JOHN E. HOPCROFT" AND RICHARD M. KARP
Abstract. The present paper shows how to construct a maximum matching in a bipartite graph

with n vertices and m edges in a number of computation steps proportional to (m + n)x/.
Key words, algorithm, algorithmic analysis, bipartite graphs, computational complexity, graphs,

matching

1. Introduction. Suppose we are given a rectangular array in which each cell
is designated as "occupied" or "unoccupied". A set of cells is independent if no
two ofthe cells lie in the same row or column. Our object is to construct an indepen-
dent set of occupied cells having maximum cardinality.

In one interpretation, the rows of the array represent boys, and the columns
represent girls. Cell i,j is occupied if boy and girl j are compatible, and we wish
to match a maximum number of compatible couples.

An alternate statement ofthe problem is obtained by representing the rows and
columns of the array as the vertices of a bipartite graph. The vertices corresponding
to row and column j are joined by an edge if and only if cell i,j is occupied. We
then seek a maximum matching; i.e., a maximum number of edges, no two of which
meet at a common vertex.

This problem has a wide variety of applications ([3], 4], [5]). These include
the determination of chain decompositions in partially ordered sets, of coset
representatives in groups, of systems of distinct representatives, and of block-
triangular decompositions of sparse matrices. The problem also occurs as a
subroutine in the solution of the Hitchcock transportation problem, and in the
determination of whether one given tree is isomorphic to a subtree of another.

In view of this variety of applications, the computational complexity of the
problem of finding a maximum matching in a bipartite graph is of interest. The
best previous methods ([1], [3], [4], [5]) seem to require O(mn) steps, where m is
the number of edges, and n the number of vertices. The present method requires
only O((m + n)x/) steps.

We hope to extend our results to the nonbipartite case (cf. [2]). With this in
mind, all the results in 2 are derived for general graphs. The specialization to the
bipartite case occurs in 3.

2. Matchings anti augmenting paths. Let G (V, E) be a finite undirected
graph (without loops, multiple edges, or isolated vertices) having the vertex set V
and the edge set E. An edge incident with vertices v and w is written {v, w}. A set
M E is a matching if no vertex v e V is incident with more than one edge in M.
A matching of maximum cardinality is called a maximum matching.

We make the following definitions relative to a matching M. A vertex v isfree
if it is incident with no edge in M.

Received by the editors November 14, 1972, and in revised form April 23, 1973. This research
was supported in part by the National Science Foundation under Grants NSF GJ96, GPo25081 and
GJ474.

" Department of Computer Science, Cornell University, Ithaca, New York, 14850.
Computer Science Department, University of California, Berkeley, California 94720.

225

16

Nonbipartite matching. Given an undirected graph (not necessarily

bipartite), find a matching of maximum cardinality.

・Structure of nonbipartite graphs is more complicated.

・But well-understood. [Tutte-Berge, Edmonds-Galai]

・Blossom algorithm: O(n4). [Edmonds 1965]

・Best known: O(m n1/2). [Micali-Vazirani 1980, Vazirani 1994]

Nonbipartite matching

PATHS, TREES, AND FLOWERS

JACK EDMONDS

1. Introduction. A graph G for purposes here is a finite set of elements
called vertices and a finite set of elements called edges such that each edge
meets exactly two vertices, called the end-points of the edge. An edge is said
to join its end-points.

A matching in G is a subset of its edges such that no two meet the same
vertex. We describe an efficient algorithm for finding in a given graph a match-
ing of maximum cardinality. This problem was posed and partly solved by
C. Berge; see Sections 3.7 and 3.8.

Maximum matching is an aspect of a topic, treated in books on graph
theory, which has developed during the last 75 years through the work of
about a dozen authors. In particular, W. T. Tutte (8) characterized graphs
which do not contain a perfect matching, or 1-factor as he calls it—that is a
set of edges with exactly one member meeting each vertex. His theorem
prompted attempts at finding an efficient construction for perfect matchings.

This and our two subsequent papers will be closely related to other work on
the topic. Most of the known theorems follow nicely from our treatment,
though for the most part they are not treated explicitly. Our treatment is
independent and so no background reading is necessary.

Section 2 is a philosophical digression on the meaning of "efficient algorithm."
Section 3 discusses ideas of Berge, Norman, and Rabin with a new proof of
Berge's theorem. Section 4 presents the bulk of the matching algorithm.
Section 7 discusses some refinements of it.

There is an extensive combinatorial-linear theory related on the one hand
to matchings in bipartite graphs and on the other hand to linear programming.
It is surveyed, from different viewpoints, by Ford and Fulkerson in (5) and
by A. J. Hoffman in (6). They mention the problem of extending this relation-
ship to non-bipartite graphs. Section 5 does this, or at least begins to do it.
There, the Kônig theorem is generalized to a matching-duality theorem for
arbitrary graphs. This theorem immediately suggests a polyhedron which in a
subsequent paper (4) is shown to be the convex hull of the vectors associated
with the matchings in a graph.

Maximum matching in non-bipartite graphs is at present unusual among
combinatorial extremum problems in that it is very tractable and yet not of
the "unimodular" type described in (5 and 6).

Received November 22, 1963. Supported by the O.N.R. Logistics Project at Princeton
University and the A.R.O.D. Combinatorial Mathematics Project at N.B.S.

449

COMBINATORICA
Akad6miai Kiad6 - Springer-Verlag

COMBINATORICA 14 (i) (1994) 71-109

A T H E O R Y OF A L T E R N A T I N G PATHS AND BLOSSOMS F O R
P R O V I N G C O R R E C T N E S S OF T H E O(v/-VE) G E N E R A L G R A P H

M A X I M U M M A T C H I N G A L G O R I T H M

VIJAY V. VAZIRANI 1

Received December 30, 1989
Revised June 15, 1993

1. I n t r o d u c t i o n

Finding a maximum matching in a graph is a classical problem in the study
of algorithms. In this paper we present new algorithmically relevant combinatorial
structure of matchings. This structure yields the first proof of correctness of the
general graph matching algorithm of Mieali and Vazirani [14]; this is currently the
most efficient known matching algorithm.

Berge's theorem [2], which says that matching M in graph G is a maximum
matching if and only if there are no augmenting paths w.r.t, it, gives an iterative
schema for finding a maximum matching in G, i.e. successively find augmenting
paths. Finding augmenting paths is fairly easy in bipartite graphs; however, not
so in general graphs (see [13] for a detailed history of the problem). The first
polynomial time algorithm (o(rvI4)) for general graph matching was given by
Edmonds [4]. In this paper, Edmonds introduced the notion of blossom (an odd
length alternating cycle), and showed that by "shrinking" blossoms, one can find
augmenting path efficiently. In this seminal paper, Edmonds also introduced the
notion of a polynomial time algorithm.

Over the years, faster implementations of Edmonds' algorithm were given by
several authors, including Whitzgall and Zahn [16], Balinski [1], Gabow [6], Lawler
[12], and Kameda and Munro [10]. In 1972, Hopcroft and Karp [9] proposed finding
augmenting paths in phases; in each phase a maximal set of disjoint minimum length
augmenting paths is found. They showed that only O (v / ~) phases are needed,
as opposed to O(IV]) iterations in the previously-mentioned schema. They also
presented an O(IEI) implementation of a phase in bipartite graphs, thereby giving
an O(Iv/~llEi) matching algorithm for such graphs, and left the open problem of

1 Partially supported by an NSF PYI Grant with matching funds from AT&; T Bell Labs at
Cornell University

AMS subject classification codes (1991): 05 C 70, 05 C 85

450 JACK EDMONDS

Section 6 presents a certain invariance property of the dual to maximum
matching.

In paper (4), the algorithm is extended from maximizing the cardinality
of a matching to maximizing for matchings the sum of weights attached to the
edges. At another time, the algorithm will be extended from a capacity of one
edge at each vertex to a capacity of dt edges at vertex vt.

This paper is based on investigations begun with G. B. Dantzig while at
the RAND Combinatorial Symposium during the summer of 1961. I am
indebted to many people, at the Symposium and at the National Bureau of
Standards, who have taken an interest in the matching problem. There has
been much animated discussion on possible versions of an algorithm.

2. Digression. An explanation is due on the use of the words "efficient
algorithm." First, what I present is a conceptual description of an algorithm
and not a particular formalized algorithm or "code."

For practical purposes computational details are vital. However, my
purpose is only to show as attractively as I can that there is an efficient
algorithm. According to the dictionary, "efficient" means "adequate in opera-
tion or performance." This is roughly the meaning I want—in the sense that
it is conceivable for maximum matching to have no efficient algorithm. Perhaps
a better word is "good."

I am claiming, as a mathematical result, the existence of a good algorithm
for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether
or not there exists an algorithm whose difficulty increases only algebraically
with the size of the graph.

The mathematical significance of this paper rests largely on the assumption
that the two preceding sentences have mathematical meaning. I am not
prepared to set up the machinery necessary to give them formal meaning, nor
is the present context appropriate for doing this, but I should like to explain
the idea a little further informally. I t may be that since one is customarily
concerned with existence, convergence, finiteness, and so forth, one is not in-
clined to take seriously the question of the existence of a better-than-finite
algorithm.

The relative cost, in time or whatever, of the various applications of a
particular algorithm is a fairly clear notion, at least as a natural phenomenon.
Presumably, the notion can be formalized. Here "algorithm" is used in the
strict sense co mean the idealization of some physical machinery which gives
a definite output, consisting of cost plus the desired result, for each member of
a specified domain of inputs, the individual problems.

The problem-domain of applicability for an algorithm often suggests for
itself possible measures of size for the individual problems—for maximum
matching, for example, the number of edges or the number of vertices in the

17

Historical significance (Jack Edmonds 1965)

Dancing problem.

・Exclusive Ivy league party attended by n men and n women.

・Each man knows exactly k women; each woman knows exactly k men.

・Acquaintances are mutual.

・Is it possible to arrange a dance so that each woman dances

with a different man that she knows?

Mathematical reformulation. Does every k-regular

bipartite graph have a perfect matching?

Ex. Boolean hypercube.

18

k-regular bipartite graphs

2-regular bipartite graph

women men

2

4

1

3

2'

3'

1'

4'

19

Theorem. Every k-regular bipartite graph G has a perfect matching.

Pf.

・Size of max matching = value of max flow in G'.

・Consider flow

・f is a flow in G' and its value = n ⇒ perfect matching. ▪

k-regular bipartite graphs have perfect matchings

€

f (u, v) =

1/k if (u, v)∈ E
1 if u = s or v = t
0 otherwise

⎧

⎨
⎪

⎩
⎪

a feasible flow f of value n

4

2'

4'

1

3

1'

3'

s tG' 2

1/k

1 1/k 1

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

21

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s↝t paths.

s

2

3

4

Edge-disjoint paths

5

6

7

t

digraph G

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and t,
find the max number of edge-disjoint s↝t paths.

Ex. Communication networks.

22

s

2

3

4

Edge-disjoint paths

5

6

7

t

digraph G
2 edge-disjoint paths

23

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s↝t paths equals value of max flow.

Pf. ≤

・Suppose there are k edge-disjoint s↝t paths P1, …, Pk.

・Set f (e) = 1 if e participates in some path Pj ; else set f (e) = 0.

・Since paths are edge-disjoint, f is a flow of value k. ▪

Edge-disjoint paths

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

24

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s↝t paths equals value of max flow.

Pf. ≥

・Suppose max flow value is k.

・Integrality theorem ⇒ there exists 0-1 flow f of value k.

・Consider edge (s, u) with f(s, u) = 1.

- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach t, always choosing a new edge

・Produces k (not necessarily simple) edge-disjoint paths. ▪

Edge-disjoint paths

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

can eliminate cycles

to get simple paths

in O(mn) time if desired

(flow decomposition)

25

Def. A set of edges F ⊆ E disconnects t from s if every s↝t path uses at least

one edge in F.

Network connectivity. Given a digraph G = (V, E) and two nodes s and t,
find min number of edges whose removal disconnects t from s.

Network connectivity

s

2

3

4

5

6

7

t

26

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s↝t paths

is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤

・Suppose the removal of F ⊆ E disconnects t from s, and | F | = k.

・Every s↝t path uses at least one edge in F.

・Hence, the number of edge-disjoint paths is ≤ k. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

27

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s↝t paths

equals the min number of edges whose removal disconnects t from s.

Pf. ≥

・Suppose max number of edge-disjoint paths is k.

・Then value of max flow = k.

・Max-flow min-cut theorem ⇒ there exists a cut (A, B) of capacity k.

・Let F be set of edges going from A to B.

・| F | = k and disconnects t from s. ▪

s

2

3

4

5

6

7

t s

2

3

4

5

6

7

t

A

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G = (V, E) and

two nodes s and t, find the max number of edge-disjoint s-t paths.

28

Edge-disjoint paths in undirected graphs

digraph G

s

2

3

4

5

6

7

t

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G = (V, E) and

two nodes s and t, find the max number of edge-disjoint s-t paths.

29

Edge-disjoint paths in undirected graphs

digraph G
(2 edge-disjoint paths)

s

2

3

4

5

6

7

t

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G = (V, E) and

two nodes s and t, find the max number of edge-disjoint s-t paths.

30

Edge-disjoint paths in undirected graphs

digraph G
(3 edge-disjoint paths)

s

2

3

4

5

6

7

t

31

Max flow formulation. Replace edge edge with two antiparallel edges and

assign unit capacity to every edge.

Observation. Two paths P1 and P2 may be edge-disjoint in the digraph but

not edge-disjoint in the undirected graph.

Edge-disjoint paths in undirected graphs

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

if P1 uses edge (u, v)

and P2 uses its antiparallel edge (v, u)

32

Max flow formulation. Replace edge edge with two antiparallel edges and

assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for

each pair of antiparallel edges e and e', either f (e) = 0 or f (e') = 0 or both.

Moreover, integrality theorem still holds.

Pf. [by induction on number of such pairs of antiparallel edges]

・Suppose f (e) > 0 and f (e') > 0 for a pair of antiparallel edges e and e'.

・Set f (e) = f (e) – δ and f (e') = f (e') – δ, where δ = min { f (e), f (e') }.

・f is still a flow of the same value but has one fewer such pair. ▪

Edge-disjoint paths in undirected graphs

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

33

Max flow formulation. Replace edge edge with two antiparallel edges and

assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for

each pair of antiparallel edges e and e', either f (e) = 0 or f (e') = 0 or both.

Moreover, integrality theorem still holds.

Theorem. Max number edge-disjoint s↝t paths equals value of max flow.

Pf. Similar to proof in digraphs; use lemma.

Edge-disjoint paths in undirected graphs

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

34

Theorem. Given an undirected graph with two nodes s and t,
the max number of edge-disjoint s-t paths equals the min number of edges

whose removal disconnects s and t.

Theorem. Given a undirected graph with two nonadjacent nodes s and t,
the max number of internally node-disjoint s-t paths equals the min number

of internal nodes whose removal disconnects s and t.

Theorem. Given an directed graph with two nonadjacent nodes s and t,
the max number of internally node-disjoint s↝t paths equals the min number

of internal nodes whose removal disconnects t from s.

Menger's theorems

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

36

Def. Given a digraph G = (V, E) with nonnegative edge capacities c(e) and

node supply and demands d(v), a circulation is a function that satisfies:

・For each e ∈ E: 0 ≤ f (e) ≤ c(e) (capacity)

・For each v ∈ V: (conservation)

Circulation with demands

flow capacity

4 / 10

3 / 3

6 / 6

6 / 7 1 / 7

2 / 4

4 / 4

7 / 9

€

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

network G

11

0

-7

-8

10

(supply node)

(demand node) (transshipment node)

-6

・Add new source s and sink t.

・For each v with d(v) < 0, add edge (s, v) with capacity -d(v).

・For each v with d(v) > 0, add edge (v, t) with capacity d(v).

Claim. G has circulation iff G' has max flow of value D =

37

Circulation with demands: max-flow formulation

s

t

10

3

6

7 7

4

4

9

supply
7 8 6

demand

10 11

network G' -8

11

-6

10 0

-7

saturates all edges

leaving s

and entering t

€

d (v)
v : d (v) > 0
∑ = − d (v)

v : d (v) < 0
∑ =: D

38

Circulation with demands

Integrality theorem. If all capacities and demands are integers, and there

exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V, E, c, d), there does not exists a circulation iff there exists

a node partition (A, B) such that Σv ∈ B d(v) > cap(A, B).

Pf sketch. Look at min cut in G'. demand by nodes in B exceeds

supply of nodes in B plus

max capacity of edges going from A to B

Feasible circulation.

・Directed graph G = (V, E).

・Edge capacities c(e) and lower bounds ℓ(e) for each edge e ∈ E.

・Node supply and demands d(v) for each node v ∈ V.

Def. A circulation is a function that satisfies:

・For each e ∈ E : ℓ(e) ≤ f (e) ≤ c(e) (capacity)

・For each v ∈ V : (conservation)

Circulation problem with lower bounds. Given (V, E, ℓ, c, d), does there

exists a feasible circulation?

39

Circulation with demands and lower bounds

€

f (e)
e in to v
∑ − f (e)

e out of v
∑ = d (v)

Max flow formulation. Model lower bounds as circulation with demands.

・Send ℓ(e) units of flow along edge e.

・Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a circulation in G'.
Moreover, if all demands, capacities, and lower bounds in G are integers,

then there is a circulation in G that is integer-valued.

Pf sketch. f (e) is a circulation in G iff f '(e) = f (e) – ℓ(e) is a circulation in G'.

40

Circulation with demands and lower bounds

lower bound upper bound

d(v) d(w)
network G

v w[2, 9]

capacity

d(v) + 2 d(w) – 2
network G'

v w7

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

42

Survey design

・Design survey asking n1 consumers about n2 products.

・Can only survey consumer i about product j if they own it.

・Ask consumer i between ci and ci' questions.

・Ask between pj and pj' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

Bipartite perfect matching. Special case when ci = ci' = pj = pj' = 1.

one survey question

per product

43

Survey design

Max-flow formulation. Model as circulation problem with lower bounds.

・Add edge (i, j) if consumer j owns product i.

・Add edge from s to consumer j .

・Add edge from product i to t.

・Add edge from t to s.

・Integer circulation ⇔ feasible survey design.

s

1

3

1'

3' t

2

4

2'

4'

consumers products

[0, ∞]

[0, 1]

[p1, p1'][c1, c1']

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

45

Airline scheduling

Airline scheduling.

・Complex computational problem faced by nation's airline carriers.

・Produces schedules that are efficient in terms of:

- equipment usage, crew allocation, customer satisfaction

- in presence of unpredictable issues like weather, breakdowns

・One of largest consumers of high-powered algorithmic techniques.

"Toy problem."

・Manage flight crews by reusing them over multiple flights.

・Input: set of k flights for a given day.

・Flight i leaves origin oi at time si and arrives at destination di destination

at time fi.

・Minimize number of flight crews.

Circulation formulation. [to see if c crews suffice]

・For each flight i, include two nodes ui and vi.

・Add source s with demand -c, and edges (s, ui) with capacity 1.

・Add sink t with demand c, and edges (vi, t) with capacity 1.

・For each i, add edge (ui, vi) with lower bound and capacity 1.

・if flight j reachable from i, add edge (vi, uj) with capacity 1.

46

Airline scheduling

s

u1

u2

u3

v1

v3

v2

t

[0, 1]

[1, 1]

u4 v4

[0, 1]

[0, 1]

crew can begin day

with any flight

flight 2 is performed

crew can end day

with any flight

same crew can do flights 2 and 4

-c

c

use c crews

47

Airline scheduling: running time

Theorem. The airline scheduling problem can be solved in O(k3 log k) time.

Pf.

・k = number of flights.

・c = number of crews (unknown).

・O(k) nodes, O(k2) edges.

・At most k crews needed.

 ⇒ solve lg k circulation problems.

・Value of the flow is between 0 and k.
 ⇒ at most k augmentations per circulation problem.

・Overall time = O(k3 log k).

Remark. Can solve in O(k3) time by formulating as minimum flow problem.

binary search for optimal value c*

48

Airline scheduling: postmortem

Remark. We solved a toy problem.

Real-world problem models countless other factors:

・Union regulations: e.g., flight crews can only fly certain number of

hours in given interval.

・Need optimal schedule over planning horizon, not just one day.

・Deadheading has a cost.

・Flights don't always leave or arrive on schedule.

・Simultaneously optimize both flight schedule and fare structure.

Message.

・Our solution is a generally useful technique for efficient reuse of limited

resources but trivializes real airline scheduling problem.

・Flow techniques useful for solving airline scheduling problems

(and are widely used in practice).

・Running an airline efficiently is a very difficult problem.

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

50

Image segmentation

Image segmentation.

・Central problem in image processing.

・Divide image into coherent regions.

Ex. Three people standing in front of complex background scene.

Identify each person as a coherent object.

liver and hepatic vascularization segmentation

Foreground / background segmentation.

・Label each pixel in picture as belonging to

foreground or background.

・V = set of pixels, E = pairs of neighboring pixels.

・ai ≥ 0 is likelihood pixel i in foreground.

・bi ≥ 0 is likelihood pixel i in background.

・pij ≥ 0 is separation penalty for labeling one of i
and j as foreground, and the other as background.

Goals.

・Accuracy: if ai > bi in isolation, prefer to label i in foreground.

・Smoothness: if many neighbors of i are labeled foreground,we should

be inclined to label i as foreground.

・Find partition (A, B) that maximizes:

51

Image segmentation

€

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
A{i, j} = 1

∑

foreground background

52

Image segmentation

Formulate as min cut problem.

・Maximization.

・No source or sink.

・Undirected graph.

Turn into minimization problem.

・Maximizing

・is equivalent to minimizing

・or alternatively

€

a j +
j∈B
∑ bi

i∈ A
∑ + pij

(i, j) ∈ E
A{i, j} = 1

∑

€

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
A{i, j} = 1

∑

€

a ii ∈ V∑ + b jj ∈ V∑()
a constant

 − a i

i∈ A
∑ − bj

j∈B
∑ + pij

(i, j) ∈ E
A{i, j} = 1

∑

Formulate as min cut problem G' = (V', E').

・Include node for each pixel.

・Use two antiparallel edges instead of

undirected edge.

・Add source s to correspond to foreground.

・Add sink t to correspond to background.

53

Image segmentation

s ti j

G'

pij

pij

pij

pij

aj

bi

two antiparallel edges in G'

edge in G

Consider min cut (A, B) in G'.

・ A = foreground.

・Precisely the quantity we want to minimize.

54

Image segmentation

s ti j

G'

pij

aj

biA

€

cap(A, B) = a j +
j∈B
∑ bi +

i∈ A
∑ pij

(i, j) ∈ E
i∈ A, j∈B

∑
if i and j on different sides,

pij counted exactly once

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

56

Project selection

Projects with prerequisites.

・Set of possible projects P : project v has associated revenue pv.

・Set of prerequisites E : if (v, w) ∈ E, can't do project v unless also do

project w.

・A subset of projects A ⊆ P is feasible if the prerequisite of every project

in A also belongs to A.

Project selection problem. Given a set of projects P and prerequisites E,

choose a feasible subset of projects to maximize revenue.

can be positive

or negative

57

Project selection: prerequisite graph

Prerequisite graph. Add edge (v, w) if can't do v without also doing w.

v

w

xv

w

x

{ v, w, x } is feasible { v, x } is infeasible

58

Min-cut formulation.

・Assign capacity ∞ to all prerequisite edge.

・Add edge (s, v) with capacity- pv if pv > 0.

・Add edge (v, t) with capacity -pv if pv < 0.

・For notational convenience, define ps = pt = 0.

s t

-pw

u

v

w

x

y z

Project selection: min-cut formulation

pv -px

py

pu

-pz

∞

∞

∞

∞
∞

∞

∞

Claim. (A, B) is min cut iff A − { s } is optimal set of projects.

・Infinite capacity edges ensure A − { s } is feasible.

・Max revenue because:

s

59

t

-pw

u

v

w

x

y z

Project selection: min-cut formulation

∞

pv -px

∞

∞

∞

∞

∞py

pu

-pz

∞

€

cap(A, B) = p v
v∈B: pv > 0

∑ + (−p v)
v∈ A: pv < 0

∑

= p v
v : pv > 0
∑

constant

− p v
v∈ A
∑

A

€

cap(A, B) = p v
v∈B: pv > 0

∑ + (−p v)
v∈ A: pv < 0

∑

= p v
v : pv > 0
∑

constant

− p v
v∈ A
∑

60

Open-pit mining. (studied since early 1960s)

・Blocks of earth are extracted from surface to retrieve ore.

・Each block v has net value pv = value of ore – processing cost.

・Can't remove block v before w or x.

Open-pit mining

v
 xw

7. NETWORK FLOW II

‣ bipartite matching

‣ disjoint paths

‣ extensions to max flow

‣ survey design

‣ airline scheduling

‣ image segmentation

‣ project selection

‣ baseball elimination

62

Baseball elimination

Q. Which teams have a chance of finishing the season with the most wins?

Montreal is mathematically eliminated.

・Montreal finishes with ≤ 80 wins.

・Atlanta already has 83 wins.

Remark. This is the only reason sports writers appear to be aware of —

conditions are sufficient but not necessary!

Baseball elimination problem

63

i team wins losses to play ATL PHI NYM MON

0 Atlanta 83 71 8 – 1 6 1

1 Philly 80 79 3 1 – 0 2

2 New York 78 78 6 6 0 – 0

3 Montreal 77 82 3 1 2 0 –

Q. Which teams have a chance of finishing the season with the most wins?

Philadelphia is mathematically eliminated.

・Philadelphia finishes with ≤ 83 wins.

・Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won

and left to play, but on whom they're against.

Baseball elimination problem

64

i team wins losses to play ATL PHI NYM MON

0 Atlanta 83 71 8 – 1 6 1

1 Philly 80 79 3 1 – 0 2

2 New York 78 78 6 6 0 – 0

3 Montreal 77 82 3 1 2 0 –

65

Baseball elimination problem

Current standings.

・Set of teams S.

・Distinguished team z ∈ S.

・Team x has won wx games already.

・Teams x and y play each other rxy additional times.

Baseball elimination problem. Given the current standings, is there any

outcome of the remaining games in which team z finishes with the most

(or tied for the most) wins?

Can team 4 finish with most wins?

・Assume team 4 wins all remaining games ⇒ w4 + r4 wins.

・Divvy remaining games so that all teams have ≤ w4 + r4 wins.

Baseball elimination problem: max-flow formulation

66

s g12 t

game nodes
(each pair of teams other than 4)

team nodes
(each team other than 4)

w4 + r4 – w2

1

0

3

2

0–

0–

1–

0–

2–

∞

∞
1–

games left

between 1 and 2

team 2 can still win

this many more games

Theorem. Team 4 not eliminated iff max flow saturates all edges leaving s.
Pf.

・Integrality theorem ⇒ each remaining game between x and y added to

number of wins for team x or team y.

・Capacity on (x, t) edges ensure no team wins too many games. ▪

Baseball elimination problem: max-flow formulation

67

s g12 t

game nodes
(each pair of teams other than 4)

team nodes
(each team other than 4)

w4 + r4 – w2

1

0

3

2

0–

0–

1–

0–

2–

∞

∞
1–

games left

between 1 and 2

team 2 can still win

this many more games

Q. Which teams have a chance of finishing the season with the most wins?

Detroit is mathematically eliminated.

・Detroit finishes with ≤ 76 wins.

・Wins for R = { NYY, BAL, BOS, TOR } = 278.

・Remaining games among { NYY, BAL, BOS, TOR } = 3 + 8 + 7 + 2 + 7 = 27.

・Average team in R wins 305/4 = 76.25 games.

Baseball elimination: explanation for sports writers

68

i team wins losses to play NYY BAL BOS TOR DET

0 New York 75 59 28 – 3 8 7 3

1 Baltimore 71 63 28 3 – 2 7 4

2 Boston 69 66 27 8 2 – 0 0

3 Toronto 63 72 27 7 7 0 – 0

4 Detroit 49 86 27 3 4 0 0 –

AL East (August 30, 1996)

69

Baseball elimination: explanation for sports writers

Certificate of elimination.

Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a

subset T* such that

Pf. ⇐

・Suppose there exists T* ⊆ S such that .

・Then, the teams in T* win at least (w(T*) + g(T*)) / | T* | games on average.

・This exceeds the maximum number that team z can win. ▪

€

T ⊆ S, w(T) := wi
i∈T
∑
wins

, g(T) := gx y
{x,y} ⊆ T

∑

remaining games
,

€

wz + gz <
w(T*)+ g(T*)

|T* |

€

wz + gz <
w(T*)+ g(T*)

|T* |

Pf. ⇒

・Use max-flow formulation, and consider min cut (A, B).

・Let T* = team nodes on source side A of min cut.

・Observe that game node x-y ∈ A iff both x ∈ T* and y ∈ T*.

- infinite capacity edges ensure if x-y ∈ A, then both x ∈ A and y ∈ A
- if x ∈ A and y ∈ A but x-y ∉ A, then adding x-y to A decreases the

capacity of the cut by gxy

s

y

x t

70

Baseball elimination: explanation for sports writers

x-ygxy

∞

∞ wz + rz – wx

y

x

Pf. ⇒

・Use max-flow formulation, and consider min cut (A, B).

・Let T* = team nodes on source side A of min cut.

・Observe that game node x-y ∈ A iff both x ∈ T* and y ∈ T*.

・Since team z is eliminated, by max-flow min-cut theorem,

・Rearranging terms: ▪

71

Baseball elimination: explanation for sports writers

€

g(S − {z}) > cap(A, B)

= g(S − {z})− g(T*)
capacity of game edges leaving s

+ (wz + gz −wx)
x∈T*
∑

capacity of team edges leaving s

= g(S − {z})− g(T*) − w(T*) + |T* | (wz + gz)

€

wz + gz <
w(T*)+ g(T*)

|T* |

€

g(S − {z}) > cap(A, B)

= g(S − {z})− g(T*)
capacity of game edges leaving s

+ (wz + gz −wx)
x∈T*
∑

capacity of team edges leaving s

= g(S − {z})− g(T*) − w(T*) + |T* | (wz + gz)

€

g(S − {z}) > cap(A, B)

= g(S − {z})− g(T*)
capacity of game edges leaving s

+ (wz + gz −wx)
x∈T*
∑

capacity of team edges leaving s

= g(S − {z})− g(T*) − w(T*) + |T* | (wz + gz)

capacity of team edges entering tcapacity of game edges leaving s

