

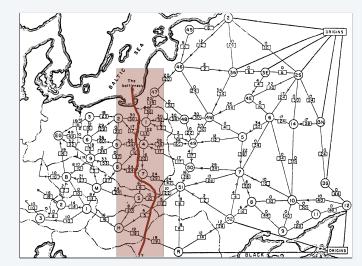
Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos

7. NETWORK FLOW II

- bipartite matching
- disjoint paths
- ▶ extensions to max flow
- survey design
- airline scheduling
- ► image segmentation
- project selection
- baseball elimination

Soviet rail network (1950s)

"Free world" goal. Cut supplies (if cold war turns into real war).



Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

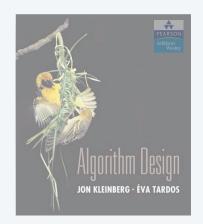
Last updated on Mar 31, 2013 3:25 PM

Max-flow and min-cut applications

Max-flow and min-cut are widely applicable problem-solving model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- · Distributed computing.
- Security of statistical data.
- Egalitarian stable matching.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- · Sensor placement for homeland security.
- Many, many, more.

liver and hepatic vascularization segmentation



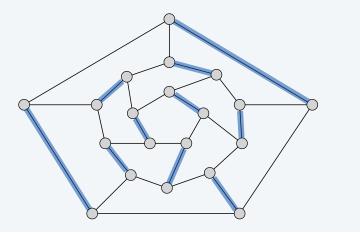
7. NETWORK FLOW II

- bipartite matching
- ▶ disjoint paths
- extensions to max flow
- survey design
- ➤ airline scheduling
- ► image segmentation
- project selection
- baseball elimination

Matching

Def. Given an undirected graph G = (V, E) a subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

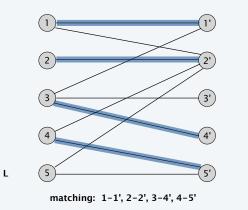
Max matching. Given a graph, find a max cardinality matching.



Bipartite matching

Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.



R

Bipartite matching

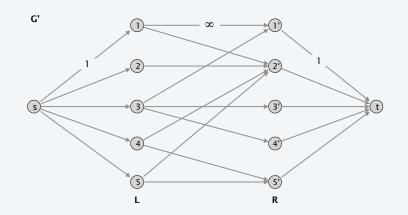
Def. A graph G is bipartite if the nodes can be partitioned into two subsets L and R such that every edge connects a node in L to one in R.

Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.



Bipartite matching: max flow formulation

- Create digraph $G' = (L \cup R \cup \{s, t\}, E')$.
- Direct all edges from *L* to *R*, and assign infinite (or unit) capacity.
- Add source *s*, and unit capacity edges from *s* to each node in *L*.
- Add sink *t*, and unit capacity edges from each node in *R* to *t*.

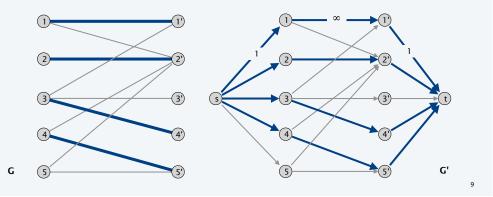


Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'.

Pf. ≤

- Given a max matching *M* of cardinality *k*.
- Consider flow *f* that sends 1 unit along each of *k* paths.
- f is a flow, and has value k.



Perfect matching in a bipartite graph

Def. Given a graph G = (V, E) a subset of edges $M \subseteq E$ is a perfect matching if each node appears in exactly one edge in M.

Q. When does a bipartite graph have a perfect matching?

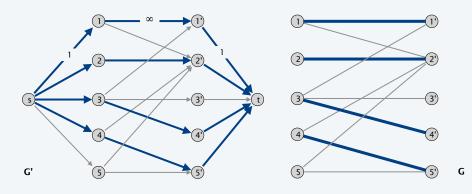
Structure of bipartite graphs with perfect matchings.

- Clearly we must have |L| = |R|.
- What other conditions are necessary?
- What conditions are sufficient?

Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'. Pf. \geq

- Let f be a max flow in G' of value k.
- Integrality theorem \Rightarrow k is integral and can assume f is 0-1.
- Consider M = set of edges from L to R with f(e) = 1.
 - each node in L and R participates in at most one edge in M
 - |M| = k: consider cut $(L \cup s, R \cup t)$ •



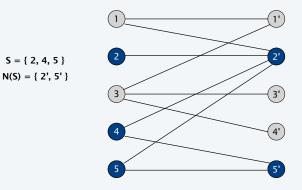
Perfect matching in a bipartite graph

11

Notation. Let S be a subset of nodes, and let N(S) be the set of nodes adjacent to nodes in S.

Observation. If a bipartite graph $G = (L \cup R, E)$ has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Pf. Each node in S has to be matched to a different node in N(S).

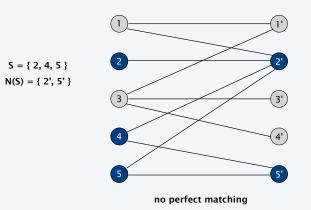


no perfect matching

Hall's theorem

Theorem. Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. *G* has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

Pf. \Rightarrow This was the previous observation.



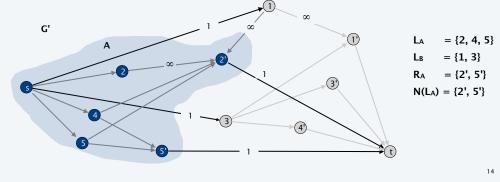
Bipartite matching running time

Theorem. The Ford-Fulkerson algorithm solves the bipartite matching problem in O(m n) time.

Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be solved in $O(m n^{1/2})$ time.

Proof of Hall's theorem

- Pf. \leftarrow Suppose G does not have a perfect matching.
 - Formulate as a max flow problem and let (*A*, *B*) be min cut in *G*'.
 - By max-flow min-cut theorem, cap(A, B) < |L|.
 - Define $L_A = L \cap A$, $L_B = L \cap B$, $R_A = R \cap A$.
 - $cap(A, B) = |L_B| + |R_A|.$
 - Since min cut can't use ∞ edges: $N(L_A) \subseteq R_A$.
 - $\bullet \ |N(L_A)| \, \leq \, |R_A| \, = \, cap(A,B) \, \, |L_B| \ < \ |L| \, \, |L_B| \, = \, |L_A|.$
- Choose $S = L_A$.



Nonbipartite matching

Nonbipartite matching. Given an undirected graph (not necessarily bipartite), find a matching of maximum cardinality.

- Structure of nonbipartite graphs is more complicated.
- But well-understood.

• Best known: $O(m n^{1/2})$.

- d. [Tutte-Berge, Edmonds-Galai]
 : O(n⁴). [Edmonds 1965]
- Blossom algorithm: $O(n^4)$.
 - [Micali-Vazirani 1980, Vazirani 1994]

SIAM J. COMPUT. Vol. 2, No. 4, December 1973

AN $n^{5/2}$ ALGORITHM FOR MAXIMUM MATCHINGS IN BIPARTITE GRAPHS*

JOHN E. HOPCROFT[†] AND RICHARD M. KARP[‡]

Abstract. The present paper shows how to construct a maximum matching in a bipartite graph with n vertices and m edges in a number of computation steps proportional to $(m + n)\sqrt{n}$.

Key words. algorithm, algorithmic analysis, bipartite graphs, computational complexity, graphs, matching

PATHS, TREES, AND FLOWERS

JACK EDMONDS

 Introduction. A graph G for purposes here is a finite set of elements called *exprises* and a finite set of elements called *edges* such that each edge meets exactly two vertices, called the *end-points* of the edge. An edge is said to join its end-points.

A matching in G is a subset of its edges such that no two meet the same vertex. We describe an efficient algorithm for finding in a given graph a matching of maximum cardinality. This problem was posed and partly solved by C. Berge; see Sections 3.7 and 3.8.

A THEORY OF ALTERNATING PATHS AND BLOSSOMS FOR PROVING CORRECTNESS OF THE $O(\sqrt{\nabla e})$ GENERAL GRAPH MAXIMUM MATCHING ALGORITHM

Combinatorica 14 (1) (1994) 71-10

VIJAY V. VAZIRANI¹ Received Desember 30, 1989 Bayised June 15, 1993

2. Digression. An explanation is due on the use of the words "efficient algorithm." First, what I present is a conceptual description of an algorithm and not a particular formalized algorithm or "code."

For practical purposes computational details are vital. However. my purpose is only to show as attractively as I can that there is an efficient algorithm. According to the dictionary, "efficient" means "adequate in operation or performance." This is roughly the meaning I want—in the sense that it is conceivable for maximum matching to have no efficient algorithm. Perhaps a better word is "good."

I am claiming, as a mathematical result, the existence of a *good* algorithm for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in difficulty exponentially with the size of the graph. It is by no means obvious whether *or not* there exists an algorithm whose difficulty increases only algebraically with the size of the graph.

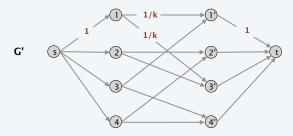
k-regular bipartite graphs have perfect matchings

Theorem. Every *k*-regular bipartite graph *G* has a perfect matching. Pf.

- Size of max matching = value of max flow in G'.
- Consider flow

 $f(u, v) = \begin{cases} 1/k & \text{if } (u, v) \in E \\ 1 & \text{if } u = s \text{ or } v = t \\ 0 & \text{otherwise} \end{cases}$

• *f* is a flow in *G*' and its value = $n \Rightarrow$ perfect matching.



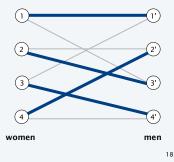
k-regular bipartite graphs

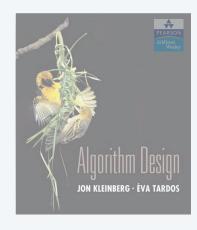
Dancing problem.

- Exclusive Ivy league party attended by *n* men and *n* women.
- Each man knows exactly *k* women; each woman knows exactly *k* men.
- Acquaintances are mutual.
- Is it possible to arrange a dance so that each woman dances with a different man that she knows?

Mathematical reformulation. Does every *k*-regular bipartite graph have a perfect matching?

Ex. Boolean hypercube.





7. NETWORK FLOW II

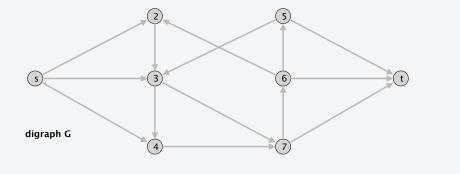
- bipartite matching
- disjoint paths
- extensions to max flow
- survey design
- ➤ airline scheduling
- ▶ image segmentation
- project selection
- baseball elimination

a feasible flow f of value n

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes *s* and *t*, find the max number of edge-disjoint $s \rightarrow t$ paths.

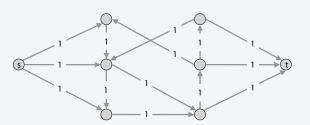


Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow. Pf. \leq

- Suppose there are k edge-disjoint $s \rightarrow t$ paths P_1, \ldots, P_k .
- Set f(e) = 1 if e participates in some path P_j ; else set f(e) = 0.
- Since paths are edge-disjoint, *f* is a flow of value *k*.

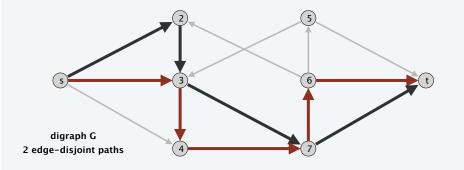


Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes *s* and *t*, find the max number of edge-disjoint $s \rightarrow t$ paths.

Ex. Communication networks.

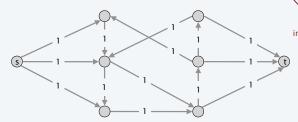


Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow. Pf. \geq

- Suppose max flow value is *k*.
- Integrality theorem \Rightarrow there exists 0-1 flow *f* of value *k*.
- Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with f(u, v) = 1
- continue until reach *t*, always choosing a new edge
- Produces k (not necessarily simple) edge-disjoint paths.

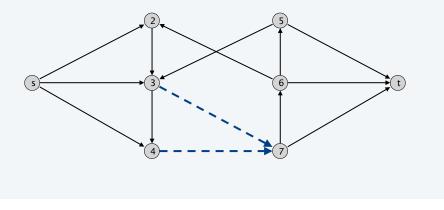


can eliminate cycles to get simple paths in O(mn) time if desired (flow decomposition) 22

Network connectivity

Def. A set of edges $F \subseteq E$ disconnects *t* from *s* if every $s \rightarrow t$ path uses at least one edge in *F*.

Network connectivity. Given a digraph G = (V, E) and two nodes *s* and *t*, find min number of edges whose removal disconnects *t* from *s*.

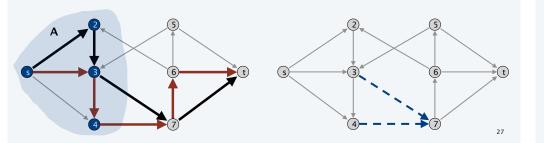


Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \rightarrow t$ paths equals the min number of edges whose removal disconnects t from s.

Pf. ≥

- Suppose max number of edge-disjoint paths is *k*.
- Then value of max flow = k.
- Max-flow min-cut theorem \Rightarrow there exists a cut (A, B) of capacity k.
- Let *F* be set of edges going from *A* to *B*.
- |F| = k and disconnects *t* from *s*.



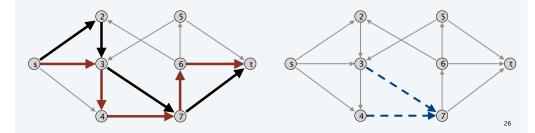
Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint $s \rightarrow t$ paths is equal to the min number of edges whose removal disconnects t from s.

Pf. ≤

25

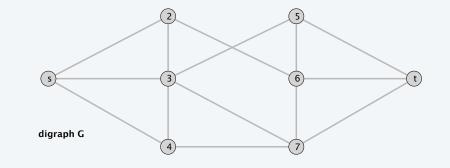
- Suppose the removal of $F \subseteq E$ disconnects *t* from *s*, and |F| = k.
- Every $s \rightarrow t$ path uses at least one edge in *F*.
- Hence, the number of edge-disjoint paths is $\leq k$.



Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

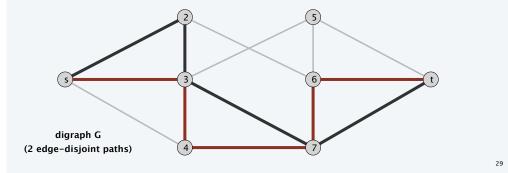
Disjoint path problem in undirected graphs. Given a graph G = (V, E) and two nodes *s* and *t*, find the max number of edge-disjoint *s*-*t* paths.



Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

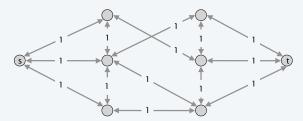
Disjoint path problem in undirected graphs. Given a graph G = (V, E) and two nodes *s* and *t*, find the max number of edge-disjoint *s*-*t* paths.



Edge-disjoint paths in undirected graphs

Max flow formulation. Replace edge edge with two antiparallel edges and assign unit capacity to every edge.

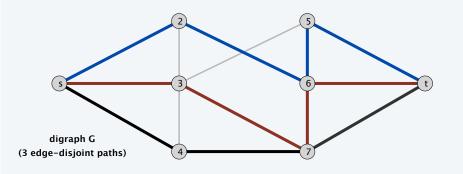
Observation. Two paths P_1 and P_2 may be edge-disjoint in the digraph but not edge-disjoint in the undirected graph.



Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G = (V, E) and two nodes *s* and *t*, find the max number of edge-disjoint *s*-*t* paths.



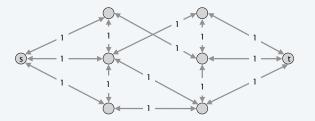
Edge-disjoint paths in undirected graphs

31

Max flow formulation. Replace edge edge with two antiparallel edges and assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e', either f(e) = 0 or f(e') = 0 or both. Moreover, integrality theorem still holds.

- Pf. [by induction on number of such pairs of antiparallel edges]
 - Suppose f(e) > 0 and f(e') > 0 for a pair of antiparallel edges e and e'.
 - Set $f(e) = f(e) \delta$ and $f(e') = f(e') \delta$, where $\delta = \min \{ f(e), f(e') \}$.
 - f is still a flow of the same value but has one fewer such pair.

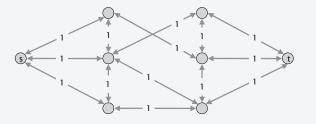


Edge-disjoint paths in undirected graphs

Max flow formulation. Replace edge edge with two antiparallel edges and assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow f in which for each pair of antiparallel edges e and e', either f(e) = 0 or f(e') = 0 or both. Moreover, integrality theorem still holds.

Theorem. Max number edge-disjoint $s \rightarrow t$ paths equals value of max flow. Pf. Similar to proof in digraphs; use lemma.



Menger's theorems

Theorem. Given an undirected graph with two nodes s and t, the max number of edge-disjoint s-t paths equals the min number of edges whose removal disconnects s and t.

Theorem. Given a undirected graph with two nonadjacent nodes s and t, the max number of internally node-disjoint s-t paths equals the min number of internal nodes whose removal disconnects s and t.

Theorem. Given an directed graph with two nonadjacent nodes s and t, the max number of internally node-disjoint $s \rightarrow t$ paths equals the min number of internal nodes whose removal disconnects t from s.

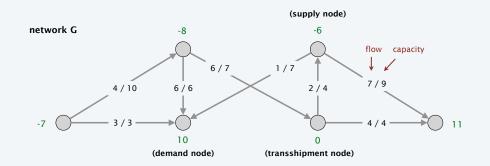
34

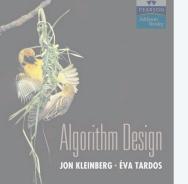
Circulation with demands

33

Def. Given a digraph G = (V, E) with nonnegative edge capacities c(e) and node supply and demands d(v), a circulation is a function that satisfies:

•	For each $e \in E$:	$0 \leq f(e)$	$\leq c(e)$		(capacity)
•	For each $v \in V$:		$\sum_{e \text{ out of } v} f(e) =$	d(v)	(conservation)



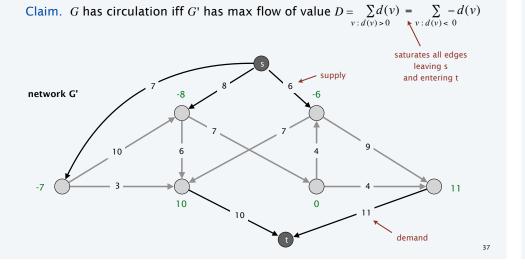


7. NETWORK FLOW II

- bipartite matching
- disjoint paths
- extensions to max flow
- survey design
- ➤ airline scheduling
- ▶ image segmentation
- project selection
- baseball elimination

Circulation with demands: max-flow formulation

- Add new source *s* and sink *t*.
- For each v with d(v) < 0, add edge (s, v) with capacity -d(v).
- For each v with d(v) > 0, add edge (v, t) with capacity d(v).



Circulation with demands

Integrality theorem. If all capacities and demands are integers, and there exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V, E, c, d), there does not exists a circulation iff there exists a node partition (A, B) such that $\sum_{v \in B} d(v) > cap(A, B)$.

Pf sketch. Look at min cut in *G*'.

demand by nodes in B exceeds supply of nodes in B plus max capacity of edges going from A to B

38

40

Circulation with demands and lower bounds

Feasible circulation.

- Directed graph G = (V, E).
- Edge capacities c(e) and lower bounds $\ell(e)$ for each edge $e \in E$.
- Node supply and demands d(v) for each node $v \in V$.

Def. A circulation is a function that satisfies:

• For each
$$e \in E$$
: $\ell(e) \leq f(e) \leq c(e)$ (capacity)

• For each $v \in V$: $\sum_{e \text{ in to } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v)$ (conservation)

Circulation problem with lower bounds. Given (V, E, ℓ, c, d) , does there exists a feasible circulation?

Circulation with demands and lower bounds

Max flow formulation. Model lower bounds as circulation with demands.

- Send $\ell(e)$ units of flow along edge e.
- · Update demands of both endpoints.

Theorem. There exists a circulation in G iff there exists a circulation in G'. Moreover, if all demands, capacities, and lower bounds in G are integers, then there is a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff $f'(e) = f(e) - \ell(e)$ is a circulation in G'.

7. NETWORK FLOW II

- ▶ bipartite matching
- ▶ disjoint paths
- ▶ extensions to max flow
- survey design
- ⋆ airline scheduling
- ► image segmentation
- project selection
- ▶ baseball elimination

Survey design

- one survey question • Design survey asking n_1 consumers about n_2 products. \leftarrow
- Can only survey consumer *i* about product *j* if they own it.
- Ask consumer *i* between *c_i* and *c_i* questions.
- Ask between p_i and p_j ' consumers about product j.

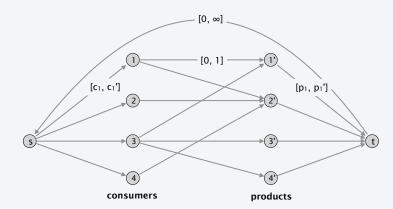
Goal. Design a survey that meets these specs, if possible.

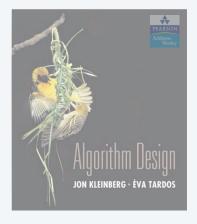
Bipartite perfect matching. Special case when $c_i = c_i' = p_j = p_i' = 1$.

Survey design

Max-flow formulation. Model as circulation problem with lower bounds.

- Add edge (*i*, *j*) if consumer *j* owns product *i*.
- Add edge from *s* to consumer *j*.
- Add edge from product *i* to *t*.
- Add edge from *t* to *s*.
- Integer circulation ⇔ feasible survey design.





43

7. NETWORK FLOW II

- bipartite matching
- ▶ disjoint paths
- ▶ extensions to max flow
- survey design
- airline scheduling
- ► image segmentation
- project selection
- ▶ baseball elimination

42

per product

Airline scheduling

Airline scheduling.

- Complex computational problem faced by nation's airline carriers.
- · Produces schedules that are efficient in terms of:
 - equipment usage, crew allocation, customer satisfaction
 - in presence of unpredictable issues like weather, breakdowns
- One of largest consumers of high-powered algorithmic techniques.

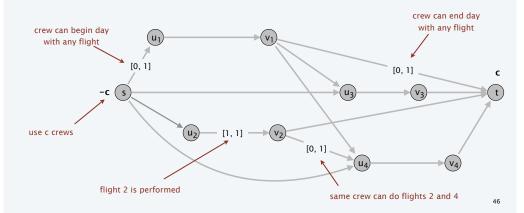
"Toy problem."

- Manage flight crews by reusing them over multiple flights.
- Input: set of *k* flights for a given day.
- Flight *i* leaves origin *o_i* at time *s_i* and arrives at destination *d_i* destination at time *f_i*.
- Minimize number of flight crews.

Airline scheduling

Circulation formulation. [to see if c crews suffice]

- For each flight *i*, include two nodes *u_i* and *v_i*.
- Add source *s* with demand *-c*, and edges (*s*, *u_i*) with capacity 1.
- Add sink *t* with demand *c*, and edges (v_i, t) with capacity 1.
- For each *i*, add edge (u_i, v_i) with lower bound and capacity 1.
- if flight *j* reachable from *i*, add edge (v_i, u_j) with capacity 1.



Airline scheduling: running time

Theorem. The airline scheduling problem can be solved in $O(k^3 \log k)$ time. Pf.

- *k* = number of flights.
- *c* = number of crews (unknown).
- O(k) nodes, $O(k^2)$ edges.
- At most *k* crews needed.
 - \Rightarrow solve lg k circulation problems. \leftarrow binary search for optimal value c*
- Value of the flow is between 0 and *k*.
 - \Rightarrow at most *k* augmentations per circulation problem.
- Overall time = $O(k^3 \log k)$.

Remark. Can solve in $O(k^3)$ time by formulating as minimum flow problem.

Airline scheduling: postmortem

Remark. We solved a toy problem.

Real-world problem models countless other factors:

- Union regulations: e.g., flight crews can only fly certain number of hours in given interval.
- Need optimal schedule over planning horizon, not just one day.
- · Deadheading has a cost.
- Flights don't always leave or arrive on schedule.
- · Simultaneously optimize both flight schedule and fare structure.

Message.

- Our solution is a generally useful technique for efficient reuse of limited resources but trivializes real airline scheduling problem.
- Flow techniques useful for solving airline scheduling problems (and are widely used in practice).
- Running an airline efficiently is a very difficult problem.



7. NETWORK FLOW II

- bipartite matching
- ▶ disjoint paths
- extensions to max flow
- survey design
- ▶ airline scheduling
- image segmentation
- project selection
- baseball elimination

Image segmentation

Image segmentation.

- Central problem in image processing.
- Divide image into coherent regions.

Ex. Three people standing in front of complex background scene. Identify each person as a coherent object.

liver and hepatic vascularization segmentation

Image segmentation

Foreground / background segmentation.

- Label each pixel in picture as belonging to foreground or background.
- V = set of pixels, E = pairs of neighboring pixels.
- $a_i \ge 0$ is likelihood pixel *i* in foreground.
- $b_i \ge 0$ is likelihood pixel *i* in background.
- *p_{ij}*≥ 0 is separation penalty for labeling one of *i* and *j* as foreground, and the other as background.

Goals.

- Accuracy: if $a_i > b_i$ in isolation, prefer to label *i* in foreground.
- Smoothness: if many neighbors of *i* are labeled foreground, we should be inclined to label *i* as foreground.
- Find partition (A, B) that maximizes: $\sum_{i \in A} a_i + \sum_{j \in B} b_j \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$

		•		
	•		-	
		•		

Image segmentation

Formulate as min cut problem.

- Maximization.
- No source or sink.
- Undirected graph.

• or alternatively

Turn into minimization problem.

• Maximizing
$$\sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

is equivalent to minimizing

$$\underbrace{\frac{j \in V b_j}{j \in V}}_{i \in A} - \sum_{i \in A} a_i - \sum_{j \in B} b_j + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$$

 $\sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1}} p_{ij}$

 $\left(\sum_{i \in V} a_i + \sum\right)$

a constant

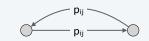
Image segmentation

Formulate as min cut problem G' = (V', E').

- Include node for each pixel.
- Use two antiparallel edges instead of undirected edge.
- Add source *s* to correspond to foreground.
- Add sink t to correspond to background.

)------ p_{ij} -------

two antiparallel edges in G'



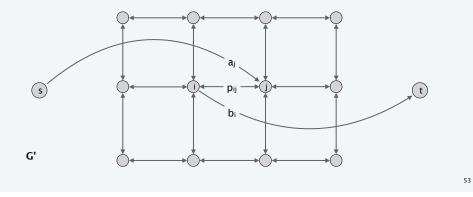


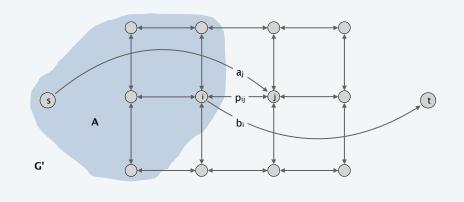
Image segmentation

Consider min cut (A, B) in G'.

• A =foreground.

$$cap(A,B) = \sum_{j \in B} a_j + \sum_{i \in A} b_i + \sum_{\substack{(i,j) \in E \\ i \in A, j \in B}} p_{ij}$$
 if i and j on different sides,
p_{ij} counted exactly once

• Precisely the quantity we want to minimize.



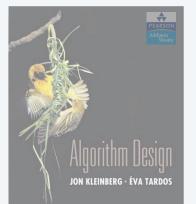
Project selection

Projects with prerequisites.

can be positive or negative

- Set of possible projects *P* : project *v* has associated revenue p_v .
- Set of prerequisites E: if $(v, w) \in E$, can't do project v unless also do project w.
- A subset of projects $A \subseteq P$ is feasible if the prerequisite of every project in A also belongs to A.

Project selection problem. Given a set of projects P and prerequisites E, choose a feasible subset of projects to maximize revenue.

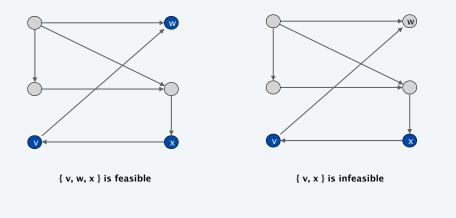


7. NETWORK FLOW II

- bipartite matching
- disjoint paths
- ▶ extensions to max flow
- survey design
- ➤ airline scheduling
- ► image segmentation
- project selection
- baseball elimination

Project selection: prerequisite graph

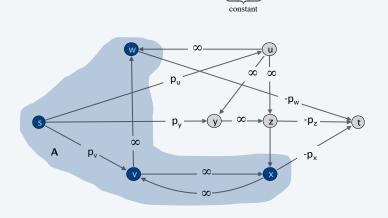
Prerequisite graph. Add edge (v, w) if can't do v without also doing w.



Project selection: min-cut formulation

Claim. (A, B) is min cut iff $A - \{s\}$ is optimal set of projects.

- Infinite capacity edges ensure *A* {*s*} is feasible.
- Max revenue because: $cap(A, B) = \sum_{v \in B: p_v > 0} p_v + \sum_{v \in A: p_v < 0} (-p_v)$

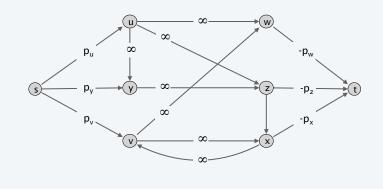


 $\sum_{v: p_v > 0} p_v - \sum_{v \in A} p_v$

Project selection: min-cut formulation

Min-cut formulation.

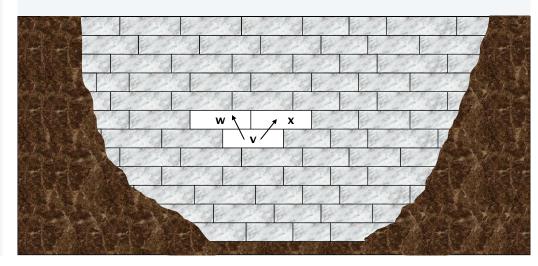
- Assign capacity ∞ to all prerequisite edge.
- Add edge (s, v) with capacity p_v if $p_v > 0$.
- Add edge (v, t) with capacity $-p_v$ if $p_v < 0$.
- For notational convenience, define $p_s = p_t = 0$.



Open-pit mining

Open-pit mining. (studied since early 1960s)

- Blocks of earth are extracted from surface to retrieve ore.
- Each block v has net value p_v = value of ore processing cost.
- Can't remove block v before w or x.



59

Baseball elimination

7. NETWORK FLOW II

- bipartite matching
- ▶ disjoint paths
- extensions to max flow
- survey design
- ▶ airline scheduling
- ▶ image segmentation
- project selection
- baseball elimination

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i	team		wins	losses	to play	ATL	РНІ	NYM	MON
0	A	Atlanta	83	71	8	-	1	6	1
1		Philly	80	79	3	1	-	0	2
2		New York	78	78	6	6	0	-	0
3		Montreal	77	82	3	1	2	0	-

Montreal is mathematically eliminated.

- Montreal finishes with ≤ 80 wins.
- Atlanta already has 83 wins.

Remark. This is the only reason sports writers appear to be aware of — conditions are sufficient but not necessary!

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i	team		wins	losses	to play	ATL	РНІ	NYM	MON
0	A	Atlanta	83	71	8	-	1	6	1
1		Philly	80	79	3	1	-	0	2
2		New York	78	78	6	6	0	-	0
3		Montreal	77	82	3	1	2	0	-

Philadelphia is mathematically eliminated.

- Philadelphia finishes with ≤ 83 wins.
- Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won and left to play, but on whom they're against.

Baseball elimination problem

Current standings.

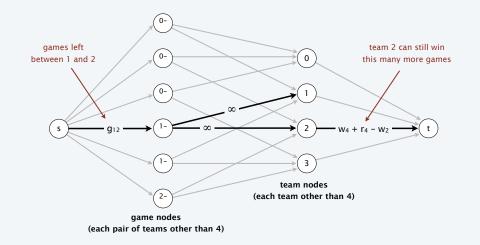
- Set of teams S.
- Distinguished team $z \in S$.
- Team x has won w_x games already.
- Teams x and y play each other r_{xy} additional times.

Baseball elimination problem. Given the current standings, is there any outcome of the remaining games in which team z finishes with the most (or tied for the most) wins?

Baseball elimination problem: max-flow formulation

Can team 4 finish with most wins?

- Assume team 4 wins all remaining games $\Rightarrow w_4 + r_4$ wins.
- Divvy remaining games so that all teams have $\leq w_4 + r_4$ wins.

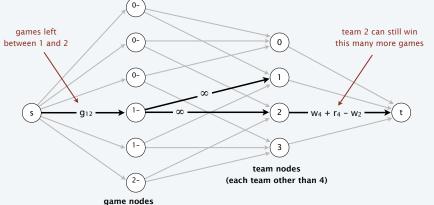


65

Baseball elimination problem: max-flow formulation

Theorem. Team 4 not eliminated iff max flow saturates all edges leaving *s*. Pf.

- Integrality theorem ⇒ each remaining game between x and y added to number of wins for team x or team y.
- Capacity on (*x*, *t*) edges ensure no team wins too many games.



(each pair of teams other than 4)

Baseball elimination: explanation for sports writers

Q. Which teams have a chance of finishing the season with the most wins?

i	team		wins	losses	to play	NYY	BAL	BOS	TOR	DET
0		New York	75	59	28	-	3	8	7	3
1		Baltimore	71	63	28	3	-	2	7	4
2		Boston	69	66	27	8	2	-	0	0
3		Toronto	63	72	27	7	7	0	-	0
4	۲	Detroit	49	86	27	3	4	0	0	-

AL East (August 30, 1996)

Detroit is mathematically eliminated.

- Detroit finishes with ≤ 76 wins.
- Wins for $R = \{$ NYY, BAL, BOS, TOR $\} = 278$.
- Remaining games among { NYY, BAL, BOS, TOR } = 3 + 8 + 7 + 2 + 7 = 27.
- Average team in *R* wins 305/4 = 76.25 games.

Baseball elimination: explanation for sports writers

Certificate of elimination.

$$T \subseteq S, \quad w(T) \coloneqq \underbrace{\sum_{i \in T}^{\# \text{ wins}}}_{i \in T}, \quad g(T) \coloneqq \underbrace{\sum_{i \in T}^{\# \text{ remaining games}}}_{\{x, y\} \subseteq T},$$

Theorem. [Hoffman-Rivlin 1967] Team *z* is eliminated iff there exists a subset *T** such that $w_z + g_z < \frac{w(T^*) + g(T^*)}{|T^*|}$

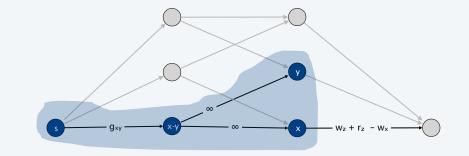
Pf. ⇐

- Suppose there exists $T^* \subseteq S$ such that $w_z + g_z < \frac{w(T^*) + g(T^*)}{|T^*|}$.
- Then, the teams in T^* win at least $(w(T^*) + g(T^*)) / |T^*|$ games on average.
- This exceeds the maximum number that team *z* can win.

Baseball elimination: explanation for sports writers

Pf. \Rightarrow

- Use max-flow formulation, and consider min cut (*A*, *B*).
- Let T^* = team nodes on source side A of min cut.
- Observe that game node $x-y \in A$ iff both $x \in T^*$ and $y \in T^*$.
- infinite capacity edges ensure if $x-y \in A$, then both $x \in A$ and $y \in A$
- if $x \in A$ and $y \in A$ but $x \cdot y \notin A$, then adding $x \cdot y$ to A decreases the capacity of the cut by g_{xy}



70

Baseball elimination: explanation for sports writers

Pf. ⇒

- Use max-flow formulation, and consider min cut (A, B).
- Let T^* = team nodes on source side *A* of min cut.
- Observe that game node $x y \in A$ iff both $x \in T^*$ and $y \in T^*$.
- Since team z is eliminated, by max-flow min-cut theorem,

$$g(S - \{z\}) > cap(A, B)$$

$$capacity of game edges leaving s capacity of team edges entering t$$

$$= g(S - \{z\}) - g(T^*) + \sum_{x \in T^*} (w_z + g_z - w_x)$$

$$= g(S - \{z\}) - g(T^*) - w(T^*) + |T^*|(w_z + g_z)$$

• Rearranging terms: $w_z + g_z < \frac{w(T^*) + g(T^*)}{|T^*|}$