
COS226 Week 1 Activity

1. Empirical analysis. Algorithms textbook 1.4 The following table gives approximate
running times for a program with N inputs, for various values of N .

N time

----------------

500 2.5 seconds

1000 10 seconds

2000 40 seconds

5000 ~4 minutes

Predict its running time (in minutes) for N = 10, 000 and give a formula that estimates
the running time as a function of N .

2. What is good about the data above? What’s wrong with the data below? Give at least
2 reasons why.

N time (seconds)

------------------------------

10 0.0030

40 0.013

3. Memory analysis. Algorithms textbook 1.4 Suppose you have an array p[] as declared
and initialized below.

• How much memory (in bytes) does the array use as a function of N? Include the
memory for both the array and the points.

public class Point {

private final int x;

private final int y;

}

Point[] p = new Point[N];

for (int i = 0; i < N; i++)

p[i] = new Point(...);

• Repeat the previous question, but use tilde notation to simplify your answer.

1



4. Worst-case input for weighted quick-union. Algorithms textbook 1.5
A binomial tree is defined recursively: a binomial tree of order 0 consists of a single
node; a binomial tree of order h is a tree obtained from two binomial trees of order
h− 1, by linking the root of one to the other. Below are binomial trees of order 0, 1,
2, 3, and 4.

Meeting 11 October 4, 2005

Fibonacci Heaps

The Fibonacci heap is a data structure implementing the
priority queue abstract data type, just like the ordinary
heap but more complicated and asymptotically faster for
some operations. We first introduce binomial trees, which
are special heap-ordered trees, and then explain Fibonacci
heaps as collections of heap-ordered trees.

Binomial trees. The binomial tree of height h is a tree
obtained from two binomial trees of height h− 1, by link-
ing the root of one to the other. The binomial tree of height
0 consists of a single node. Binomial trees of heights up
to 4 are shown in Figure 43. Each step in the construc-

Figure 43: Binomial trees of heights 0, 1, 2, 3, 4. Each tree is
obtained by linking two copies of the previous tree.

tion increases the height by one, increases the degree (the
number of children) of the root by one, and doubles the
size of the tree. It follows that a binomial tree of height h
has root degree h and size 2h. The root has the largest de-
gree of any node in the binomial tree, which implies that
every node in a binomial tree with n nodes has degree at
most log2 n.
To store any set of items with priorities, we use a small
collection of binomial trees. For an integer n, let ni be
the i-th bit in the binary notation, so we can write n =∑

i≥0 ni2i. To store n items, we use a binomial tree of
size 2i for each ni = 1. The total number of binomial trees
is thus the number of 1’s in the binary notation of n, which

is at most log2(n + 1). The collection is referred to as a
binomial heap. The items in each binomial tree are stored
in heap-order. There is no specific relationship between
the items stored in different binomial trees. The item with
minimum key is thus stored in one of the logarithmically
many roots, but it is not clear in which one. An example is

=+
10

4

111312

15 7

15
9 89

15

10

1113

15

12

4 7

9

5

8

5

9

Figure 44: Adding the shaded node to a binomial heap consisting
of three binomial trees.

shown in Figure 44 where 1110 = 10112 items are stored
in three binomial trees with sizes 8, 2, and 1. In order
to add a new item to the set, we create a new binomial
tree of size 1 and we successively link binomial trees as
dictated by the rules of adding 1 to the binary notation of
n. In the example, we get 10112 + 12 = 11002. The new
collection thus consists of two binomial trees with sizes 8
and 4. The size 8 tree is the old one, and the size 4 tree
is obtained by first linking the two size 1 trees and then
linking the resulting size 2 tree to the old size 2 tree. All
this is illustrated in Figure 44.

Fibonacci heaps. A Fibonacci heap is a collection of
heap-ordered trees. Ideally, we would like it to be a col-
lection of binomial trees, but we need more flexibility. It
will be important to understand how exactly the nodes of a
Fibonacci heap are connected by pointers. Siblings are or-
ganized in doubly-linked cyclic lists, and each node has a
pointer to its parent and a pointer to one of its children, as
shown in Figure 45. Besides the pointers, each node stores
a key, its degree, and a bit that can be used to mark or un-

34

(a) How many nodes are in a binomial tree of order h?

(b) And what is the height of a binomial tree of order h?

(c) What is the minimum number of union() operations (using the weighted quick-
union algorithm) that produces a binomial tree of order h = 3.

(d) What is the order of growth worst case number of array accesses of find() on a
binomial tree, as a function of its number of nodes N?

public int find(int p) {

while (p != id[p])

p = id[p];

return p;

}

2


