Who is this dashing gent?

Time vs. Frequency Domain

Audio signal

• Representation 1: Sum of many delta functions

Time vs. Frequency Domain

Audio signal

• Representation 2: Sum of **two** sine functions

Kolmogorov Complexity

• Simplest way to represent:

- Equivalent representations:
 - Sum of two sine functions in the time domain.
 - Sum of two deltas in the frequency domain.

Time Domain to Frequency Domain

DFT and FFT

• DFT: Discrete Fourier Transform, O(N²)

- Non-obvious fact: We compute N sinusoid amplitudes.
 - In previous example, only two were non-zero.
- FFT: Fast Fourier Transform
 - Recursive version of DFT
 - Runs in O(N log N)!

Nice clean input signal

Frequency Filtering

Frequency Filtering

Frequency Filtering

(audible errors are outside the part on the graph)

Frequency Filtering Summary

Image FFTs

magnitude spectrum

Low Pass Filtering with Image FFTs

High Pass Filtering with Image FFTs

Phase Vocoding

- FFT:
 - Basis for Pitch and Time Shifting

Related Courses

- COS314: Intro to Computer Music
- COS325: Transforming Reality by Computer
- ELE301: Signals and Systems

COMPUTER GRAPHICS

De-blurring

De-blurring

General model of blur

PSF = point-spread function (given by blur kernel) effect of blur on single point

* = convolution

Non-blind deconvolution

- PSF is known
- Lucy-Richardson algorithm
- Assume Poisson distribution on input pixels
- Iterative approximation

Blind deconvolution

Related Courses

- COS426 Computer Graphics
- COS496 Computer Vision

CLASSIFICATION

Classification

- Given an input, assign a label from a list
 - Email text \rightarrow {spam, ham}
 - Handwritten digit \rightarrow {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Classification

• Given an input, assign a label from a list.

Tł	nis is crazy!!! D Spam x	ē	2		
+	Elisabeth Meade masseym(Apr 27 (3 da to sigcse 💌	ays ago) 🛣 🔸	*		
4	Why is this message in Spam? It's similar to messages that wer detected by our spam filters. Learn more				
	Why Pemex will acknowledge in S_C_X_N? ExxonMobil profits \$12 Billion due Arkansas Oil Flow. Green Peace will execute S_C_X_N tool. Authorities to lift the existing bounds versus huge Oil. As opportunists we shall earn from Big Oil, although diminish upcoming catastrophe. Participate huge Oil kept obliged by investing S_C_X_N on April 29!!!		2	\rightarrow	spam

Supervised Learning

- Given set of labeled training data.
 - Training set
 - Testing set
- Use training set to train a model.

• Use testing set to test performance of model.

Support Vector Machines

• Vanilla version: Binary classifier (two labels)

- Basic idea
 - Each input is a point in an N-dimensional space
 - Find best hyper-plane separating the two classes
- Examples
 - {rent, income} → {happy, sad}
 - {age, weight, height, blood sugar, sex} \rightarrow {has diabetes, no}
 - email → {spam, ham}

Goal: Build a classifier

Construct Training Set (randomly)

Linearly Separable Data

Non Linearly Separable Data

Which Separating Hyperplane to Use?

Maximizing the Margin

Digression

- Why are we drawing straight lines (or planes (or hyperplanes))?
 - Avoids overfitting!

Support Vectors

Finding the Separating Hyperplane

 $\min_{\boldsymbol{w},\boldsymbol{b}}||\boldsymbol{w}||$

With two constraints:

Class 1 data obeys $wx_i - b \leq -1$

And class 2 data obeys $wx_i - b \ge 1$

Don't be scared of the math!

What does this have to do with email?

- How do we represent our email as a number?
- Approach: First byte is our first dimension. Second byte is our second dimension, etc.
 - Is this a good idea?

What does this have to do with email?

 "C H E A P V1agra <u>www.viagra4man.ru</u> no prescription required"

• Better approach, create a feature vector!

Example of a Feature Vector

"... the last time I'll trust a monkey. What would a monkey do with a shirt anyway?"

• Example: Feature TF vector:

- Feature vector variants:
 - Could weight uncommon words more highly.
 - Could normalize the total size of the vector.
- Question:
 - What data structure might we want to use when building this vector?
 - When using the SVM to see if a particular email is spam?

The Kernel Trick

Naïve solution: Transform the input data into a higher dimension using the following nonlinear transformation:

$$\left[\begin{array}{c} x_1\\ x_2 \end{array}\right] \rightarrow \left[\begin{array}{c} x_1^2\\ \sqrt{2}x_1x_2\\ x_2^2 \end{array}\right]$$

Gaussian Kernel

$$\kappa(\mathbf{x}, \mathbf{z}) = \exp{-rac{\|\mathbf{x} - \mathbf{z}\|^2}{\sigma}}$$

Machine Learning

- SVM: Solves binary classification
- Many other problems
 - Multiway classification
 - Regression
 - Clustering

Music Genre Classification

		Confusion Matrix																		
	Alt Country	Alt Rock	Bluegrass	Blues	Xtian Ska	Country	Deathmetal	Gothmetal	Gothrock	Hiphop Grp	Indie Rock	Industrial	Pop Punk	Prog Rock	WavelPunk	Wave2Punk	R&B	Rappers	Ska	
decision	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Alt Country
	0	6	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	Alt Rock
	0	0	0	0	0	0	0	0	0	0	Ο	0	0	0	0	0	0	0	0	Bluegrass
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Blues
	0	0	0	0	0	0	0	0	0	0	Ο	0	0	0	Ο	0	0	0	0	Xtian Ska
	7	13	0	2	0	39	2	0	0	3	5	0	1	4	2	1	4	0	0	Country
	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	Deathmetal
	0	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	Gothmetal
	<u> </u>	0	0	0	0	0	0	0	<u>v</u>	<u> </u>	<u> </u>	0	0	0	0	0	0	0	_0	Gothrock
	U	U 54	U	U C	U	U	U	U	U	~	U	U	U	U c	0	0	0	1	0	HiphopGrp
	0	54	0	ь о	0	2	0	0	0	1	44	Š	8	ь 0	3	8	14	U	1	Indie Kock Inductrial
	0	0	0	0	0	0	0	0	0	0	0	X	~	0	0	0	0	0	0	Pon Punk
	0	0	0	0	0	0	0	0	0	0	0	0	~	~	0	0 0.	0	0	0	Prog Rock
	<u></u>	0	0	0	0	0	0	0	0	0	0	0	0	~	~	0	0	0	-	Were ID-
	n	n	ñ	n	n	n	n	n	n	ñ	n	n	n	n	0	<u>, , , , , , , , , , , , , , , , , , , </u>	0	0	0	Wave1Punk Wave2Punk
	Ō	Ō	ō	4	Ō	Ō	Ō	Ō	Ō	1	1	ō	Ō	ō	0	^o	18	0	0	R&B
	0	2	0	0	0	2	0	0	0	13	4	1	0	0	1	Ō	21	67	ō	Rappers
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ska

correct answer

Related Courses

- COS401 Intro to Machine Translation
- COS402 Artificial Intelligence
- COS424 Interacting with Data

INFERENCE

Forensics, security, privacy

Facebook Likes study

Predictors of high intelligence

- Curly Fries, Colbert Report...

Low intelligence

- Sephora, Harley Davidson...

Sexual orientation: 88% accuracy

Religious affiliation: 82% accuracy

Supermarkets: predictive analytics

College Vs. Retirement Savings

Best And Worst Cities For Jobs

How America's Wealthiest Get Rich

TECH | 2/16/2012 @ 11:02AM | 1,458,125 views

How Target Figured Out A Teen Girl Was Pregnant Before Her Father Did

Every time you go shopping, you share intimate details about your consumption patterns with retailers. And many of those retailers are studying those details to figure out what you like, what you need, and which coupons are most likely to make you happy. <u>Target</u>, for example, has figured out how to data-mine its way into your womb, to figure out whether you have a baby on the way long before you need to start buying diapers.

Charles Duhigg outlines in the <u>New York Times</u>

Everything has a Fingerprint

Devices, human behavior and anything in between

Everything has a Fingerprint

Devices, human behavior and anything in between

After applying Fourier Transform

Everything has a Fingerprint

Devices, human behavior and anything in between

3D structure reconstructed from scans

Everything has a Fingerprint

Devices, human behavior and anything in between

What's being typed?

Is writing style sufficient to deanonymize material posted online?

Stylometric author identification: Notable successes

Linguistic Idiosyncracies

A sample parse tree

news 🕨 health

Say 'Ahhh': A Simpler Way To Detect Parkinson's

by NPR STAFF

July 21, 2012 4:32 PM

Getting a diagnosis for Parkinson's disease might be as easy as placing a phone call.

There's currently no cure for Parkinson's, a debilitating neurological disease. There's also no blood test that can detect it, meaning early intervention is almost impossible.

But soon there might be a shockingly easy way to screen for Parkinson's disease. It would be as simple as picking up the telephone and saying "ahhh."

"There's some evidence, admittedly weak, that voice disturbances may well be one of the first or early indicator of the disease," mathematician Max Little tells weekends on *All Things Considered* host Guy Raz.

Related Courses

- COS432 Computer Security
- COS402 Artificial Intelligence
- COS511 Foundations of Machine learning

DYNAMICAL SYSTEMS

Actual Chaos

http://www.youtube.com/watch?v=pYPRnxS6uAw

Simulated Chaos

Population Dynamics

Population Dynamics

$$\frac{dx_1}{dt} = chx_1(1 - x_1) - dx_1$$

- c: colonization rate
- h: habitat availability
- *x*₁: population

Predator prey

•
$$\frac{dx_1}{dt} = b_1 x_1 - d_1 x_1 x_2$$

•
$$\frac{dx_2}{dt} = -d_2 x_2 + b_2 x_1 x_2$$

-
$$d_i$$
: death rates
-
$$b_i$$
: birth rates
ODEs and PDEs

- Often relatively easy to specify.
- Often very hard to analyze.
 - Symbolic analysis is tough.
 - Simulation is often much easier.

{c1² c2 d³ k² L2 L3 + c1³ c2 d k³ L2 L3 + 2 c1² c2 d² k² L1 L2 L3 + c1³ c2 k³ L1 L2 L3 + c1² c2 d k² L1² L2 L3 + d⁷ L2² L3 + c1² d³ k² L2² L3 + d⁴ L1 L2² L3 + 6 c1 d⁴ k L1 L2² L3 + c1² d³ k² L2² L3 + c1² d³ k² L2² L3 + d⁵ L1 L2³ L3 + d⁵ L3 + d⁵ L2³ L3 + d⁵ L2³ L3 + d⁵ L3 + d 2 c1² d² k² L1 L2² L3 + 6 d⁵ L1² L2² L3 + 6 c1 d³ k L1² L2² L3 + c1² d k² L1² L2 L3 + 4 d⁴ L1³ L2² L3 + 2 c1 d² k L1³ L2² L3 + d³ L1⁴ L2² L3 + d⁵ L1 L2² r + 2 c1 d⁵ k L2² r + c1² d³ k² L2² r + 4 d⁶ L1 L2² r + 4 d⁶ L2² r + 4 $6 c_1 d_1^4 + 1 (1 d_2^2 + 2 c_1^2 d_2^2 + 2 c_1^2 d_2^2 + 4 c_1^2 d_1^2 + 2 c_1^2 d_2^2 + 2 c_1^2 d_2^2 + 4 d_1^4 (1 d_1^2 + 2 c_1^2 d_1^2 + 2 d_1^2 + 2 d_1^2 d_1^2$ c1² c2 d k² L1² L3 r + 2 d⁷ L2 L3 r + 2 c1 d⁵ k L2 L3 r + 3 c1² c2 d² k² L2 L3 r + 6 c1 d³ k L1² L3 r + 6 c1 d⁴ k L1 L2 L3 r + 4 c1² c2 d k² L1 L2 L3 r + 12 d⁵ L1² L3 r + 6 c1 d³ k L1² L2 L3 r + 6 c1 d³ k L1² L2 L3 r + 6 c1 d³ k L1² L2 L3 r + 6 c1 d⁴ k L1 L2 L3 r + 6 c1 d⁴ k c1² c2 k² L1² L2 L3 r + 8 d⁴ L1³ L2 L3 r + 2 c1 d² k L1³ L2 L3 r + 2 d³ L1⁴ L2 L3 r + 7 d⁶ L2² L3 r + 10 c1 d⁴ k L2² L3 r + 3 c1² d² k² L2² L3 r + 24 c1 d³ k L1 L2² L3 r + 4 c1² d k² L1 L2² L3 r + 4 c1² L3 r 30 d⁴ L1² L2² L3 r + 18 c1 d² k L1² L2² L3 r + c1² k² L1² L2² L3 r + 16 d³ L1³ L2² L3 r + 4 c1 d k L1³ L2² L3 r + 3 d² L1⁴ L2² L3 r + 2 d⁷ L2 r² + 2 c1 d⁵ k L2 r² + 8 d⁶ L1 L2 r² + 6 c1 d⁴ k L1 L2 r² + $12 a^{5} Li^{2} L2 r^{2} + 6 c 1 a^{3} k Li^{2} L2 r^{2} + 8 d^{4} Li^{3} L2 r^{2} + 2 c 1 d^{2} k Li^{3} L2 r^{2} + 2 d^{3} Li^{4} L2 r^{2} + 7 d^{6} L2^{7} r^{2} + 10 c 1 d^{4} k L2^{7} r^{2} + 3 c 1^{2} d^{2} k^{2} L2^{7} r^{2} + 24 d^{5} L1 L2^{7} r^{2} + 4 c 1^{2} d^{2} k^{2} L1 L2^{7} r^{2} L1$ 30 d⁴ L1² L2² r² + 18 c1 d² k L1² L2² r² + c1² k² L1² L2² r² + 16 d³ L1³ L2² r² + 4 c1 d k L1³ L2² r² + 3 d² L1⁴ L2² r² + 4 d⁶ L1 L3 r² + 4 d⁶ L1 L3 r² + 4 d⁵ L1 L3 r² + 6 d⁵ L1² c1² c2 k² L1² L3 x² + 4 d⁴ L1³ L3 x² + d³ L1⁴ L3 x² + 14 d⁶ L2 L3 x² + 10 c1 d⁴ k L2 L3 x² + 3 c1² c2 d k² L2 L3 x² + 48 d⁵ L1 L2 L3 x² + 24 c1 d³ k L1 L2 L3 x² + 2 c1² c2 k² L1 L2 L3 x² + 60 d⁴ L1² L2 L3 x² + 10 c1 d⁴ k L2 L3 x² + 3 c1² c2 d k² L2 L3 x² + 48 d⁵ L1 L2 L3 x² + 24 d⁴ L1³ L2 L3 x² + 2 c1² c2 k² L1 L2 L3 x² + 2 c1 d³ k L1 L2 L3 x² + 2 c1² c2 k² L1 L2 L3 x² + 10 c1 d⁴ k L2 L3 x² + 3 c1² c2 d k² L2 L3 x² + 48 d⁵ L1 L2 L3 x² + 24 d⁴ L1 L2 L3 x² + 2 c1² c2 k² L1 L2 L3 x² + 40 d⁴ L1² L2 L3 x² + 10 c1 d⁴ k L2 L3 x² + 3 c1² c2 d k² L2 L3 x² + 48 d⁵ L1 L2 L3 x² + 24 d⁴ L1 L2 L3 x² + 2 c1² c2 k² L1 L2 L3 x² + 40 d⁴ L1² L2 L3 x² + 40 d⁴ L1 + 40 d 18 c1 d² k L1² L2 L3 r² + 32 d³ L1³ L2 L3 r² + 4 c1 d k L1³ L2 L3 r² + 6 d² L1⁴ L2 L3 r² + 21 d⁵ L2² L3 r² + 20 c1 d³ k L2² L3 r² + 3 c1² d k² L2² L3 r² + 60 d⁴ L1 L2² L3 r² + 36 c1 d² k L1 L2² L3 r² + 60 d⁴ L2² L3 r² $2 c1^{2} k^{2} Li Li^{2} Li r^{2} + 60 d^{3} Li^{2} Li^{2} r^{3} + 18 c1 d k Li^{2} Li^{2} Li r^{2} + 20 d^{2} Li^{3} Li^{2} Li r^{2} + 2 c1 k Li^{3} Li^{2} Li r^{2} + 3 d Li^{4} Li^{2} Li r^{2} + d^{4} Li r^{3} + 4 d^{4} Li^{3} r^{3} + d^{3} Li^{4} r^{3} + 14 d^{6} Li r^{3} + 14 d^{$ 60 d⁴ L1 L2² r³ + 36 c1 d² k L1 L2² r³ + 2 c1² k² L1 L2² r³ + 60 d³ L1² L2² r³ + 18 c1 d k L1² L2² r³ + 24 d² L1³ L2² r³ + 24 d² L1³ L2² r³ + 26 L1 k L1³ L2² r³ + 3 d L1⁴ L2² r³ + 2 d d⁵ L1 L3 r³ + 24 d⁵ L1 2 c1² c2 k² L1 L3 r³ + 30 d⁴ L1² L3 r³ + 16 d³ L1³ L3 r³ + 3 d² L1⁴ L3 r³ + 42 d⁵ L2 L3 r³ + 20 c1 d³ k L2 L3 r³ + c1² c2 k² L2 L3 r³ + 120 d⁴ L1 L2 L3 r³ + 36 c1 d² k L1 L2 L3 r³ + 120 d³ L1² L2 L3 r³ + 18 c1 dk L1² L2 L3 r³ + 48 d² L1³ L2 L3 r³ + 2 c1 k L1³ L2 L3 r³ + 60 d1⁴ L2 L3 r³ + 35 d⁴ L2² L3 r³ + 20 c1 d² k L2² L3 r³ + c1² k² L2² L3 r³ + 80 d³ L1 L2² L3 r³ + 24 c1 dk L1 L2² L3 r³ + 60 d² L1² L2² L3 r³ + c1 dk L1 L2³ L3 r³ + c1 dk L3 6 c1 k L1² L2² L3 r³ + 16 d L1³ L2² L3 r³ + L1⁴ L2² L3 r³ + 7 d⁶ r⁴ + 24 d⁵ L1 r⁴ + 30 d⁴ L1² r⁴ + 16 d³ L1³ r⁴ + 3 d² L1⁴ r⁴ + 42 d⁵ L2 r⁴ + 20 c1 d³ k L2 r⁴ + 120 d⁴ L1 L2 r⁴ + 36 c1 d² k L1 L2 r⁴ + 120 d³ L1² L2 r⁴ + 18 c1 d k L1² L2 r⁴ + 48 d² L1³ L2 r⁴ + 2 c1 k L1³ L2 r⁴ + 6 d L1⁴ L2 r⁴ + 35 d⁴ L2² r⁴ + 20 c1 d² k L2² r⁴ + c1² k² L2² r⁴ + 80 d³ L1 L2² r⁴ + 24 c1 d k L1 L2² r⁴ + 60 d² L1² L2² r⁴ + 6 d L1⁴ L2 r⁴ + 35 d⁴ L2² r⁴ + 20 c1 d² k L2² r⁴ + 6 d³ L1 L2² r⁴ + 6 d L1² L2² r⁴ + 6 d L1⁴ L2 r⁴ + 6 d L1 6 c1 k L1² L2² r⁴ + 16 d L1³ L2² r⁴ + L1⁴ L2² r⁴ + 21 d⁵ L3 r⁴ + c1² c2 k² L3 r⁴ + 60 d⁴ L1 L3 r⁴ + 60 d³ L1² L3 r⁴ + 24 d² L1³ L3 r⁴ + 3 d L1⁴ L3 r⁴ + 70 d⁴ L2 L3 r⁴ + 20 c1 d² k L2 L3 r⁴ + 160 d³ L1 L2 L3 r⁴ + 24 c1 dk L1 L2 L3 r⁴ + 120 d² L1² L2 L3 r⁴ + 6 c1 k L1² L2 L3 r⁴ + 32 d L1³ L2 L3 r⁴ + 2 L1⁴ L2 L3 r⁴ + 35 d³ L2² L3 r⁴ + 10 c1 dk L2² L3 r⁴ + 60 d² L1 L2² L3 r⁴ + 6 c1 k L1 L2² L3 r⁴ + 30 d L1² L2³ r⁴ + 2 L1⁴ L2 L3 r⁴ + 35 d³ L2² L3 r⁴ + 10 c1 dk L2² L3 r⁴ + 60 d² L1 L2² L3 r⁴ + 6 c1 k L1 L2² L3 r⁴ + 30 d L1² L2³ r⁴ + 2 L1⁴ L2 L3 r⁴ + 35 d³ L2² L3 r⁴ + 10 c1 dk L2² L3 r⁴ + 60 d² L1 L2² L3 r⁴ + 6 c1 k L1 L2² L3 r⁴ + 30 d L1² L2³ r⁴ + 2 L1⁴ L2 L3 r⁴ + 35 d³ L2² L3 r⁴ + 10 c1 dk L2² L3 r⁴ + 60 d² L1 L2² L3 r⁴ + 6 c1 k L1 L2² L3 r⁴ + 30 d L1² L2³ r⁴ + 2 L1⁴ L2 L3 r⁴ + 35 d³ L2² L3 r⁴ + 10 c1 dk L2² L3 r⁴ + 60 d² L1 L2² L3 r⁴ + 6 c1 k L1 L2² L3 r⁴ + 30 d L1² L2³ r⁴ + 2 L1⁴ L2³ r⁴ + 35 d³ L2² L3 r⁴ + 10 c1 dk L2² L3 r⁴ + 60 d² L1 L2² L3 r⁴ + 60 d² L2² L3 r⁴ + 60 d² L2⁴ L3 r⁴ + 60 d⁴ L2⁴ L3 r⁴ + 60 d⁴ L2⁴ 4 L1³ L2⁷ L3 r⁴ + 21 d⁵ r⁵ + 60 d⁴ L1 r⁵ + 60 d³ L1² r⁵ + 24 d² L1³ r⁵ + 3d L1⁴ r⁵ + 70 d⁴ L2 r⁵ + 20 c1 d² k L2 r⁵ + 160 d³ L1 L2 r⁵ + 24 c1 d k L1 L2 r⁵ + 120 d² L1² L2 r⁵ + 6 c1 k L1² L2 r⁵ + 32 d L1³ L 2 L1⁴ L2 r⁵ + 35 d³ L2² r⁵ + 10 c1 d k L2² r⁵ + 60 d² L1 L2² r⁵ + 6 c1 k L1 L2² r⁵ + 30 d L1² L2² r⁵ + 4 L1³ L2² r⁵ + 35 d⁴ L3 r⁵ + 80 d³ L1 L3 r⁵ + 60 d² L1² L3 r⁵ + 16 d L1³ L3 r⁵ + 11⁴ L3 r⁵ + 70 d³ L2 L3 r⁵ + 10 c1 d k L2 L3 r⁵ + 120 d² L1 L2 L3 r⁵ + 6 c1 k L1 L2 L3 r⁵ + 60 d L1² L2 L3 r⁵ + 8 L1³ L2 L3 r⁵ + 21 d² L2⁷ L3 r⁵ + 24 d L1 L2² L3 r⁵ + 6 L1² L2² L3 r⁵ + 35 d⁴ r⁶ + 80 d³ L1 r⁶ + 60 d² L1² r⁶ + 16 d L1³ r⁶ + L1⁴ r⁶ + 70 d³ L2 r⁶ + 10 c1 d k L2 r⁶ + 120 d² L1 L2 r⁶ + 6 c1 k L1 L2 r⁶ + 60 d L1² L2 r⁶ + 8 L1³ L2 r⁶ + 21 d² L2² r⁶ + 2 c1 k L2² r⁶ + 2 d L1 L2² r⁶ + 6 L1² L2² r⁶ + 60 d² L1 L3 r⁶ + 60 d² 30 d L1² L3 r⁶ + 4 L1³ L3 r⁶ + 4 L1³ L3 r⁶ + 42 d² L2 L3 r⁶ + 2 c1 k L2 L3 r⁶ + 48 d L1 L2 L3 r⁶ + 12 L1² L2 L3 r⁶ + 7 d L2² L3 r⁶ + 4 L1 L2² L3 r⁶ + 35 d³ r⁷ + 60 d² L1 r⁷ + 30 d L1² r⁷ + 4 L1³ r⁷ + 42 d² L2 r⁷ + 2 c1 k L2 r⁷ + 48 d L1 L2 r⁷ + 12 L1² L2 r⁷ + 7 d L2² r⁷ + 4 L1 L2² r⁷ + 21 d² L3 r⁷ + 24 d L1 L3 r⁷ + 6 L1² L3 r⁷ + 14 d L2 L3 r⁷ + 8 L1 L2 L3 r⁷ + L2² L3 r⁷ + 22 d L1 r⁸ + 6 L1² r⁸ + 14 d L2 r⁸ + 8 L1 L2 r⁸ + 14 d L2 $L2^{2}r^{8} + 7 d L3r^{8} + 4 L1 L3r^{8} + 2 L2 L3r^{8} + 7 d r^{9} + 4 L1r^{9} + 2 L2r^{9} + L3r^{9} + r^{10}$

Steady State output of Kinase Cascade Model that I explored in grad school

Euler's method

$$\frac{dy}{dt} = f(t, y)$$

- Suppose we know $y = y_0$ at $t = t_0$
- What is y_1 at time $t_1 = t_0 + h$?

 $- y_1 = y_0 + f(t_0, y_0)h$

Runge-Kutta

- Key idea:
 - Use multiple values of t
- Example:
 - $y_{i+1} = y_i + (0.5k_1 + 0.5k_2)h$ • $k_1 = f(t_i, y_i)$

•
$$k_2 = f(t_i + h, y_i + k_1 h)$$

• Compare to Euler:

$$-y_1 = y_0 + f(t_0, y_0)h$$

One big question

- What time step should we use?
 - Fixed time step.
 - Better: Adaptive time steps.
- Vast space of accuracy vs. time tradeoffs!

Simulated Circuit Chaos

Simulated Circuit Chaos

Chua's Circuit in Action

Belousov–Zhabotinsky reaction

http://www.youtube.com/watch?v=D6qIfT7EGv4

Belousov–Zhabotinsky reaction

http://www.youtube.com/watch?v=3JAqrRnKFHo

Related Courses

 COS323: Computing for the Physical and Social Sciences

TWO TALES OF CRYPTOGRAPHY

The Enigma machine

Sinking of the Reuben James, 1941

Fatal flaw: no letter can encrypt to itself

Ciphertext	0	Н	J	Y	Ρ	D	0	М	Q	N	J	С	0	S	G	A	w	Н	L	Е	Ι	Н	Y	S	0	Ρ	J	S	М	N	U
Position 1			к	Е	I	N	Е	В	E	S	0	N	D	Е	R	E	N	E	R	Е	I	G	N	I	S	S	Е				
Position 2				к	Е	I	N	Е	В	Е	S	0	N	D	Е	R	E	N	Е	R	Е	I	G	N	I	S	S	Е			
Position 3					к	E	I	N	Е	В	Е	s	0	N	D	E	R	Е	N	E	R	E	I	G	N	I	S	S	E		

Crib: *Keine besonderen ereignisse*

Eisenhower: Enigma cryptanalysis was decisive in Allied victory

Group discussion

Alice and Bob each have their own locks/keys

Neither has key to other's lock Alice has a box (duh)

They don't trust the mail carrier

Can Alice send a secret message to Bob?

Solution

This can be achieved mathematically!

Alice and Bob agree on a public value g and prime number p.

Diffie-Hellman key exchange

Related Courses

- COS432 Computer Security
- COS433 Cryptography

THE DINING PHILOSOPHERS PROBLEM

The Dining Philosophers Problem

- Five philosophers alternately eat and think.
- Can only eat if two forks held.
- Cannot pick up two forks simultaneously.
- Philosophers cannot communicate.
 - What strategy should they use to make sure that nobody starves?

The Dining Philosophers Problem

- Dangerous strategy style:
 - If left fork available, pick it up. Wait until right fork is available.

The Dining Philosophers Problem

- Still a dangerous strategy style:
 - If left fork available, pick it up. Wait until right fork is available. If more than 10 seconds pass, put down left fork.

Dijkstra's Solution

- Give number to each fork
 - Philosopher always picks up smaller fork first
- Why is this useful?
 - Prevents deadlock. Fork 5 cannot be picked up unless someone is ready to eat.
- Doesn't scale!

Semaphores (also Dijkstra)

- Have a waiter as an arbitrator. Only allow someone with a fork to pick up the 5th fork.
 - A and C are eating.
 - If D or E want to eat, waiter will tell them they can't pick up their fork (only one on table).
- No deadlock, but someone might still starve.

Related Courses

• COS318 – Operating Systems

 Also: Check out <u>www.cs.utexas.edu/~EWD</u> sometime. Lots of interesting and random thoughts. Some are even funny.

THINKING OUTSIDE THE BOX

Non-Turing machine computers

Solving equations using bike parts

Diophantine equation: find *integers* $x_1...x_n$ s.t. $a_1x_1 + a_2x_2 + ... a_nx_n = b$

WHAT IS THE SIMPLEST POSSIBLE COMPUTER?

(Or) Simplest interesting Universe

Discrete, 1-dimensional space and time Each point in space-time has binary value

Local physics

 Value of a state at time t+1 determined entirely by neighboring values at time t

Discuss in groups: how many such universes?

current pattern	111	110	101	100	011	010	001	000
new state	?	?	?	?	?	?	?	?

Each Universe is called "Rule n" n<256

This is the infamous Rule 110

current pattern	111	110	101	100	011	010	001	000
new state	0	1	1	0	1	1	1	0

Most rules aren't interesting

Here's Rule 110

Here's Rule 110

Theorem (Matthew Cook, 2004): Rule 110 is Turing complete.

Related Courses

- COS487 Theory of Computation
- COS433 Cryptography

ENVIRONMENTAL GENOMICS A.K.A. METAGENOMICS

Fermi Paradox (1950)

- "Where is everybody?"
 - The Sun is young compared to its neighbors.
 - At any practical interstellar speed, the entire galaxy could be colonized in tens of millions of years.

- Interesting questions:
 - How common are planets?
 - What conditions can support life?
 - What are the chances life becomes intelligent?

Extremophiles

Environmental Genomics

- Much easier to read short sequences.
- Hard to predictably cut into small sequences.

Figure: Computational biology methods and their application to the comparative genomics of endocellular symbiotic bacteria of insects. http://www.ncbi.nlm.nih.gov/pubmed/19495914

Algorithm

- Greedy algorithm
 - Calculate pairwise alignments.
 - Find the two fragments with the largest overlap.
 - Merge them.
 - Repeat until nothing else can be merged.
- Caveats
 - Fragments may have errors (use edit distance).
 - Fragments may be backwards.

• Lives 1.7 miles below ground.

– No oxygen. No light. 140 degrees fahrenheit.

- Obtains energy from hydrogen and sulfate produced by decaying uranium.
- Only species in its ecosystem.
 - Completely independent of the sun (unlike deep sea life which uses oxygen).

- Environmental metagenomics
 - 1500 gallons of water filtered
 - Only one distinct genome found using shotgun reassembly

- Reading the source code of a bacterium
 - Noisy substring matching with other life
 - Can probably form endospores
 - Can extract carbon from carbon dioxide
 - Can extract nitrogen from rocks

Related Courses

 COS455 – Intro to Genomics and Computational Molecular Biology

The dark side

My cousins like my statuses re **#Syria** then unlike them straight away. Thus notifying me they're with the revolt but still cant show it :(

about 5 hours ago via web Retweeted by you and 20 others

Seply 13 Retweeted (Undo)

27

There's just something about the picture of an engineer in Silicon Valley pushing a feature live at the end of a week, and then heading out for some beer, while people halfway around the world wake up and start using the feature and trusting their lives to it. It gives you pause. Mat Honan, Wired: "In the space of one hour, my entire digital life was destroyed"

Yet, the future looks bright

Car accidents: over 1 million deaths a year

We will save every one of those lives

Google's self-driving car gathers almost 1 GB/**second** This is what it "sees"

Additional Citations

- High quality motion deblurring from a single image
 - <u>http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.218.</u>
 <u>6835</u>
- Private traits and attributes are predictable from digital records of human behavior
 - <u>http://www.pnas.org/content/early/2013/03/06/1218772110.f</u> <u>ull.pdf+html</u>
- Fingerprinting
 - <u>http://33bits.org/tag/fingerprinting/</u>
 - <u>http://33bits.org/2012/02/20/is-writing-style-sufficient-to-deanonymize-material-posted-online/</u>
- Keyboard Acoustic Emanations Revisited
 - <u>http://www.tygar.net/papers/Keyboard_Acoustic_Emanat</u> <u>ions_Revisited/ccs.pdf</u>

Additional Citations

- Enigma
 - https://en.wikipedia.org/wiki/Cryptanalysis_of_the_Enigma
- Diffie Hellman
 - <u>http://technet.microsoft.com/en-us/library/cc962035.aspx</u>
- Rule 110
 - https://en.wikipedia.org/wiki/Rule 110
- Solving equations using bike parts
 - <u>https://rjlipton.wordpress.com/2009/06/29/solving-</u> <u>diophantine-equations-the-easy-way/</u>