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Input.  An edge-weighted digraph, source vertex s, and target vertex t. 
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Def.  A st-cut (cut) is a partition of the vertices into two disjoint sets,

with s in one set A and t in the other set B.

Def.  Its capacity is the sum of the capacities of the edges from A to B. 

Mincut problem 
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Def.  A st-cut (cut) is a partition of the vertices into two disjoint sets,

with s in one set A and t in the other set B.

Def.  Its capacity is the sum of the capacities of the edges from A to B. 
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Def.  A st-cut (cut) is a partition of the vertices into two disjoint sets,

with s in one set A and t in the other set B.

Def.  Its capacity is the sum of the capacities of the edges from A to B. 

Minimum st-cut (mincut) problem.  Find a cut of minimum capacity. 
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"Free world" goal.  Cut supplies (if cold war turns into real war).

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

Mincut application (1950s)

7

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Potential mincut application (2010s)

Government-in-power’s goal.  Cut off communication to set of people.

8



Input.  An edge-weighted digraph, source vertex s, and target vertex t. 

Maxflow problem 
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Def.  An st-flow (flow) is an assignment of values to the edges such that:

・Capacity constraint:  0 ≤ edge's flow ≤ edge's capacity.

・Local equilibrium:  inflow = outflow at every vertex (except s and t).
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Maxflow problem

Def.  An st-flow (flow) is an assignment of values to the edges such that:

・Capacity constraint:  0 ≤ edge's flow ≤ edge's capacity.

・Local equilibrium:  inflow = outflow at every vertex (except s and t).

Def.  The value of a flow is the inflow at t.
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Maxflow problem

Def.  An st-flow (flow) is an assignment of values to the edges such that:

・Capacity constraint:  0 ≤ edge's flow ≤ edge's capacity.

・Local equilibrium:  inflow = outflow at every vertex (except s and t).

Def.  The value of a flow is the inflow at t.

Maximum st-flow (maxflow) problem.  Find a flow of maximum value.
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Soviet Union goal.  Maximize flow of supplies to Eastern Europe.

Figure 2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western So-
viet Union and Eastern European countries, with a maximum flow of value 163,000 tons from
Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The bottleneck’.

Maxflow application (1950s)

13

flow

capacity

rail network connecting Soviet Union with Eastern European countries
(map declassified by Pentagon in 1999)



Potential maxflow application (2010s)

"Free world" goal.  Maximize flow of information to specified set of people.

14

facebook graph



Input.  A weighted digraph, source vertex s, and target vertex t. 
Mincut problem.  Find a cut of minimum capacity. 

Maxflow problem.  Find a flow of maximum value.

Remarkable fact.  These two problems are dual!

Summary
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Initialization.  Start with 0 flow.

Ford-Fulkerson algorithm
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Augmenting path.  Find an undirected path from s to t such that:

・Can increase flow on forward edges (not full).

・Can decrease flow on backward edge (not empty).

Idea: increase flow along augmenting paths
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Augmenting path.  Find an undirected path from s to t such that:

・Can increase flow on forward edges (not full).

・Can decrease flow on backward edge (not empty).

Idea: increase flow along augmenting paths
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Augmenting path.  Find an undirected path from s to t such that:

・Can increase flow on forward edges (not full).

・Can decrease flow on backward edge (not empty).

Idea: increase flow along augmenting paths
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Augmenting path.  Find an undirected path from s to t such that:

・Can increase flow on forward edges (not full).

・Can decrease flow on backward edge (not empty).

Idea: increase flow along augmenting paths
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Termination.  All paths from s to t are blocked by either a

・Full forward edge.

・Empty backward edge.

Idea: increase flow along augmenting paths
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Ford-Fulkerson algorithm

Questions.

・How to compute a mincut? 

・How to find an augmenting path?

・If FF terminates, does it always compute a maxflow?

・Does FF always terminate? If so, after how many augmentations?

23

Start with 0 flow.
While there exists an augmenting path:
  -  find an augmenting path
  -  compute bottleneck capacity
  -  increase flow on that path by bottleneck capacity

Ford-Fulkerson algorithm
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Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges

from A to B minus the sum of the flows on its edges from from B to A.

Flow-value lemma.  Let f  be any flow and let (A, B) be any cut. Then, the net 

flow across (A, B) equals the value of f.
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Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges

from A to B minus the sum of the flows on its edges from from B to A.

Flow-value lemma.  Let f  be any flow and let (A, B) be any cut. Then, the net 

flow across (A, B) equals the value of f.
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Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges

from A to B minus the sum of the flows on its edges from from B to A.

Flow-value lemma.  Let f  be any flow and let (A, B) be any cut. Then, the net 

flow across (A, B) equals the value of f.
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Relationship between flows and cuts

Def. The net flow across a cut (A, B) is the sum of the flows on its edges

from A to B minus the sum of the flows on its edges from from B to A.

Flow-value lemma.  Let f  be any flow and let (A, B) be any cut. Then, the net 

flow across (A, B) equals the value of f.

Pf.  By induction on the size of B.

・Base case:  B = { t }.

・Induction step:  remains true by local equilibrium when moving

any vertex from A to B.

Corollary. Outflow from s = inflow to t = value of flow.

28



Relationship between flows and cuts

Weak duality.  Let f  be any flow and let (A, B) be any cut.

Then, the value of the flow ≤ the capacity of the cut.

Pf.  Value of flow f  =  net flow across cut (A, B)  ≤  capacity of cut (A, B).
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Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f :
  i. There exists a cut whose capacity equals the value of the flow f.
 ii.  f  is a maxflow.

iii. There is no augmenting path with respect to f.

[ i ⇒ ii ]

・Suppose that (A, B) is a cut with capacity equal to the value of f.

・Then, the value of any flow f '  ≤  capacity of (A, B)  =  value of f.

・Thus,  f is a maxflow.

30

weak duality by assumption



Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f :
  i. There exists a cut whose capacity equals the value of the flow f.
 ii.  f  is a maxflow.

iii. There is no augmenting path with respect to f.

[ ii ⇒ iii ]   We prove contrapositive:  ~iii ⇒ ~ii.

・Suppose that there is an augmenting path with respect to f.

・Can improve flow f  by sending flow along this path.

・Thus,  f  is not a maxflow.

31



Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths.

Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f :
  i. There exists a cut whose capacity equals the value of the flow f.
 ii.  f  is a maxflow.

iii. There is no augmenting path with respect to f.

[ iii ⇒ i ] 

Suppose that there is no augmenting path with respect to f.

・Let (A, B) be a cut where A is the set of vertices connected to s by an 

undirected path with no full forward or empty backward edges.

・By definition, s is in A; since no augmenting path, t is in B.

・Capacity of cut  = net flow across cut

                          =  value of flow f.

32

forward edges full; backward edges empty

flow-value lemma



To compute mincut (A, B) from maxflow f :

・By augmenting path theorem, no augmenting paths with respect to f.

・Compute A  = set of vertices connected to s by an undirected path

with no full forward or empty backward edges.

Computing a mincut from a maxflow

33
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Ford-Fulkerson algorithm

Questions.

・How to compute a mincut?   Easy.  ✔ 

・How to find an augmenting path?  BFS works well.

・If FF terminates, does it always compute a maxflow?  Yes.  ✔

・Does FF always terminate? If so, after how many augmentations?

35

yes, provided edge capacities are integers
(or augmenting paths are chosen carefully)

requires clever analysis

Start with 0 flow.
While there exists an augmenting path:
  -  find an augmenting path
  -  compute bottleneck capacity
  -  increase flow on that path by bottleneck capacity

Ford-Fulkerson algorithm



Ford-Fulkerson algorithm with integer capacities

Important special case.  Edge capacities are integers between 1 and U.

Invariant.  The flow is integer-valued throughout Ford-Fulkerson.

Pf.  [by induction]

・Bottleneck capacity is an integer.

・Flow on an edge increases/decreases by bottleneck capacity.

Proposition.  Number of augmentations ≤ the value of the maxflow.

Pf.  Each augmentation increases the value by at least 1.

Integrality theorem.  There exists an integer-valued maxflow.

Pf.  Ford-Fulkerson terminates and maxflow that it finds is integer-valued.

36

flow on each edge is an integer

and FF finds one!important for some applications (stay tuned)



Bad news.  Even when edge capacities are integers, number of augmenting 

paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

37
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Bad news.  Even when edge capacities are integers, number of augmenting 

paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson
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Bad news.  Even when edge capacities are integers, number of augmenting 

paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson
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Bad news.  Even when edge capacities are integers, number of augmenting 

paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson
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Bad news.  Even when edge capacities are integers, number of augmenting 

paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson
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Bad news.  Even when edge capacities are integers, number of augmenting 

paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson

42
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Bad news.  Even when edge capacities are integers, number of augmenting 

paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson
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Bad news.  Even when edge capacities are integers, number of augmenting 

paths could be equal to the value of the maxflow.

Bad case for Ford-Fulkerson
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Bad news.  Even when edge capacities are integers, number of augmenting

paths could be equal to the value of the maxflow.

Good news.  This case is easily avoided.  [use shortest/fattest path]

Bad case for Ford-Fulkerson
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How to choose augmenting paths?

FF performance depends on choice of augmenting paths.

46

augmenting path 
with fewest 

number of edges

augmenting path
with maximum

bottleneck capacity

shortest path fattest path

augmenting path number of paths implementation

shortest path ≤  ½ E V queue (BFS)

fattest path ≤ E ln(E U) priority queue

random path ≤ E U randomized queue

DFS path ≤ E U stack (DFS)

digraph with V vertices, E edges, and integer capacities between 1 and U
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Flow edge data type.   Associate flow fe and capacity ce with edge e = v→w.

Flow network data type.  Need to process edge e = v→w in either direction:

Include e in both v and w's adjacency lists.

Residual capacity.

・Forward edge:  residual capacity  = ce - fe.

・Backward edge:  residual capacity  = fe.

Augment flow.

・Forward edge:  add ∆.

・Backward edge:  subtract ∆.

Flow network representation

48
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Residual network.  A useful view of a flow network.

Key point.  Augmenting path in original network is equivalent to

directed path in residual network.

t

Flow network representation
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Flow edge API

 public class FlowEdge public class FlowEdge public class FlowEdge

FlowEdge(int v, int w, double capacity) create a flow edge v→w

int from() vertex this edge points from

int to() vertex this edge points to

int other(int v) other endpoint

double capacity() capacity of this edge

double flow() flow in this edge

double residualCapacityTo(int v) residual capacity toward v

void addResidualFlowTo(int v, double delta) add delta flow toward v

String toString() string representation

w7 / 9v

flow fe capacity ce

v w

2

7

residual capacity
forward edge

backward edge
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Flow edge:  Java implementation

public class FlowEdge
{
    private final int v, w;          // from and to
    private final double capacity;   // capacity
    private double flow;             // flow

    public FlowEdge(int v, int w, double capacity)
    {
       this.v        = v;
       this.w        = w;  
       this.capacity = capacity;
    }

    public int from()         { return v;        }  
    public int to()           { return w;        }  
    public double capacity()  { return capacity; }
    public double flow()      { return flow;     }

    public int other(int vertex)
    {
       if      (vertex == v) return w;
       else if (vertex == w) return v;
       else throw new RuntimeException("Illegal endpoint");
    }

    public double residualCapacityTo(int vertex)             {...}
    public void addResidualFlowTo(int vertex, double delta)  {...}
}  

flow variable
(mutable)

next slide
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Flow edge:  Java implementation (continued)

    public double residualCapacityTo(int vertex)
    {
       if      (vertex == v) return flow;
       else if (vertex == w) return capacity - flow;
       else throw new IllegalArgumentException();
    }

    public void addResidualFlowTo(int vertex, double delta)
    {
       if      (vertex == v) flow -= delta;
       else if (vertex == w) flow += delta;
       else throw new IllegalArgumentException();
    }  

forward edge

backward edge

forward edge

backward edge

w7 / 9v

flow fe capacity ce

v w

2

7

residual capacity
forward edge

backward edge
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Conventions.  Allow self-loops and parallel edges.

Flow network API

        public class FlowNetwork        public class FlowNetwork

FlowNetwork(int V)FlowNetwork(int V) create an empty flow network with V vertices

FlowNetwork(In in)FlowNetwork(In in) construct flow network input stream

void addEdge(FlowEdge e)addEdge(FlowEdge e) add flow edge e to this flow network

Iterable<FlowEdge> adj(int v)adj(int v) forward and backward edges incident to v

Iterable<FlowEdge> edges()edges() all edges in this flow network

int V()V() number of vertices

int E()E() number of edges

String toString()toString() string representation



Flow network:  Java implementation

54

public class FlowNetwork
{
    private final int V;
    private Bag<FlowEdge>[] adj;
    
    public FlowNetwork(int V)
    {
       this.V = V;
       adj = (Bag<FlowEdge>[]) new Bag[V];
       for (int v = 0; v < V; v++)
          adj[v] = new Bag<FlowEdge>();
    }

    public void addEdge(FlowEdge e)
    {
       int v = e.from();
       int w = e.to();
       adj[v].add(e);
       adj[w].add(e);
    }

    public Iterable<FlowEdge> adj(int v)
    {  return adj[v]; }
}  

same as EdgeWeightedGraph,
but adjacency lists of
FlowEdges instead of Edges

add forward edge
add backward edge



Maintain vertex-indexed array of FlowEdge lists (use Bag abstraction).

Flow network:  adjacency-lists representation
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Flow network representation

adj[]
0

1

2

3

4

5

0 2 1.03.0 0 1 2.0 2.0

Bag
objects

4 5 1.03.0 3 5 2.0 2.0

4 5 1.03.0 2 4 1.0 1.0 1 4 1.0 0.0

3 5 2.02.0 2 3 1.0 0.0 1 3 3.0 2.0

2 4 1.01.0 2 3 1.0 0.0 0 2 3.0 1.0

1 4 0.01.0 1 3 3.0 2.0 0 1 2.0 2.0

references to the same 
FlowEdge object

6 
8
0 1  2.0
0 2  3.0
1 3  3.0
1 4  1.0
2 3  1.0
2 4  1.0
3 5  2.0
4 5  3.0

tinyFN.txt

V

E
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Ford-Fulkerson:  Java implementation

public class FordFulkerson
{
   private boolean[] marked;   // true if s->v path in residual network   
   private FlowEdge[] edgeTo;  // last edge on s->v path
   private double value;       // value of flow

   public FordFulkerson(FlowNetwork G, int s, int t)
   {
      value = 0.0;
      while (hasAugmentingPath(G, s, t))
      {
         double bottle = Double.POSITIVE_INFINITY;
         for (int v = t; v != s; v = edgeTo[v].other(v))
            bottle = Math.min(bottle, edgeTo[v].residualCapacityTo(v));

         for (int v = t; v != s; v = edgeTo[v].other(v))
            edgeTo[v].addResidualFlowTo(v, bottle); 

         value += bottle;
      }
   }

   public double hasAugmentingPath(FlowNetwork G, int s, int t)
   {  /* See next slide. */  }

   public double value()
   {  return value;  }

   public boolean inCut(int v)
   {  return marked[v];  }
}

compute 
bottleneck capacity

augment flow

is v reachable from s in residual network?
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Finding a shortest augmenting path (cf. breadth-first search)

private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
{
    edgeTo = new FlowEdge[G.V()];
    marked = new boolean[G.V()];

    Queue<Integer> queue = new Queue<Integer>();
    queue.enqueue(s);
    marked[s] = true;
    while (!queue.isEmpty())
    {
        int v = queue.dequeue();

        for (FlowEdge e : G.adj(v))
        {
            int w = e.other(v);
            if (e.residualCapacityTo(w) > 0 && !marked[w])
            {
               edgeTo[w] = e;
               marked[w] = true;
               queue.enqueue(w);
            }
        }
    }

    return marked[t];
}

save last edge on path to w; 
mark w;
add w to the queue

found path from s to w
in the residual network?

is t reachable from s in residual network?
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Maxflow/mincut is a widely applicable problem-solving model.

・Data mining.

・Open-pit mining.

・Bipartite matching.

・Network reliability.

・Baseball elimination.

・Image segmentation.

・Network connectivity.

・Distributed computing.

・Security of statistical data.

・Egalitarian stable matching.

・Multi-camera scene reconstruction.

・Sensor placement for homeland security.

・Many, many, more.

Maxflow and mincut applications
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liver and hepatic vascularization segmentation



Bipartite matching problem
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N students apply for N jobs.

Each gets several offers.

Is there a way to match all students to jobs?

1

2

3

4

5

Alice

Bob

Carol

Dave

Eliza

Adobe
Amazon
Google

Adobe
Amazon

Adobe
Facebook 
Google

Amazon
Yahoo

Amazon
Yahoo

6

7

8

9

10

Adobe

Amazon

Facebook

Google

Yahoo

Alice
Bob
Carol

Alice
Bob
Dave
Eliza

Carol

Alice
Carol

Dave
Eliza

bipartite matching problem



Given a bipartite graph, find a perfect matching.

Bipartite matching problem
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bipartite graph

N students N companies

1

2

3

4

5

Alice

Bob

Carol

Dave

Eliza

Adobe
Amazon
Google

Adobe
Amazon

Adobe
Facebook 
Google

Amazon
Yahoo

Amazon
Yahoo

6

7

8

9

10

Adobe

Amazon

Facebook

Google

Yahoo

Alice
Bob
Carol

Alice
Bob
Dave
Eliza

Carol

Alice
Carol

Dave
Eliza

bipartite matching problemperfect matching (solution)

Alice

Bob

Carol

Dave

Eliza

——  Google

——  Adobe

——  Facebook

——  Yahoo

——  Amazon 3

1

5

2

4

6

8

9

7

10



Network flow formulation of bipartite matching

・Create s, t, one vertex for each student, and one vertex for each job.

・Add edge from s to each student (capacity 1).

・Add edge from each job to t  (capacity 1).

・Add edge from student to each job offered (infinite capacity).
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1

2

3

4

5

Alice

Bob

Carol

Dave

Eliza

Adobe
Amazon
Google

Adobe
Amazon

Adobe
Facebook 
Google

Amazon
Yahoo

Amazon
Yahoo

6

7

8

9

10

Adobe

Amazon

Facebook

Google

Yahoo

Alice
Bob
Carol

Alice
Bob
Dave
Eliza

Carol

Alice
Carol

Dave
Eliza

3

1

t

6

8

9

55

2

4

7

10

s

bipartite matching problem

N students N companies

flow network



1-1 correspondence between perfect matchings in bipartite graph and 

integer-valued maxflows of value N.

Network flow formulation of bipartite matching
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3

1

t

6

8

9
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2

4

7

10

s

1

2

3

4
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Alice
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Adobe
Amazon
Google

Adobe
Amazon

Adobe
Facebook 
Google

Amazon
Yahoo

Amazon
Yahoo

6

7

8

9

10

Adobe

Amazon

Facebook

Google

Yahoo

Alice
Bob
Carol

Alice
Bob
Dave
Eliza

Carol

Alice
Carol

Dave
Eliza

bipartite matching problemflow network

N students N companies



Goal.  When no perfect matching, explain why.

What the mincut tells us

64

5

3

2

4

10

6

8

7

9

5

2

4

10

7

1

S = { 2, 4, 5 }
T = { 7, 10 }

student in S
can be matched

only to
companies in T

| S | > | T |

no perfect matching exists



Mincut.  Consider mincut (A, B).

・Let S  = students on s side of cut.

・Let T  = companies on s side of cut.

・Fact:  | S |  > | T |; students in S can be matched only to companies in T.

Bottom line.  When no perfect matching, mincut explains why.

What the mincut tells us

65

3

1

t

6

8

9
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2

4

7

10

s

2

4

7

10

s

5

no perfect matching exists

S = { 2, 4, 5 }
T = { 7, 10 }

student in S
can be matched

only to
companies in T

| S | > | T |



Q.  Which teams have a chance of finishing the season with the most wins?

Montreal is mathematically eliminated.

・Montreal finishes with ≤ 80 wins.

・Atlanta already has 83 wins.

Baseball elimination problem

66

i team wins losses to play ATL PHI NYM MON

0 Atlanta 83 71 8 – 1 6 1

1 Philly 80 79 3 1 – 0 2

2 New York 78 78 6 6 0 – 0

3 Montreal 77 82 3 1 2 0 –



Q.  Which teams have a chance of finishing the season with the most wins?

Philadelphia is mathematically eliminated.

・Philadelphia finishes with ≤ 83 wins.

・Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won 

and left to play, but on whom they're against.

Baseball elimination problem

67

i team wins losses to play ATL PHI NYM MON

0 Atlanta 83 71 8 – 1 6 1

1 Philly 80 79 3 1 – 0 2

2 New York 78 78 6 6 0 – 0

3 Montreal 77 82 3 1 2 0 –



Q.  Which teams have a chance of finishing the season with the most wins?

Detroit is mathematically eliminated.

・Detroit finishes with ≤ 76 wins.

・Wins for R  = { NYY, BAL, BOS, TOR } = 278.

・Remaining games among { NYY, BAL, BOS, TOR } = 3 + 8 + 7 + 2 + 7 = 27.

・Average team in R wins 305/4 = 76.25 games.

Baseball elimination problem

68

i team wins losses to play NYY BAL BOS TOR DET

0 New York 75 59 28 – 3 8 7 3

1 Baltimore 71 63 28 3 – 2 7 4

2 Boston 69 66 27 8 2 – 0 0

3 Toronto 63 72 27 7 7 0 – 0

4 Detroit 49 86 27 3 4 0 0 –

AL East (August 30, 1996)



Intuition.  Remaining games flow from s to t.

Fact.  Team 4 not eliminated iff all edges pointing from s are full in maxflow. 

Baseball elimination problem:  maxflow formulation

69

s g12 t

game vertices
(each pair of teams other than 4)

team vertices
(each team other than 4)

w4 + r4 – w2

1

0

3

2

0–2

0–3

1–3

0–1

2–3

∞

∞

1–2

games left
between 1 and 2

team 2 can still win
this many more games



Maximum flow algorithms: theory

(Yet another) holy grail for theoretical computer scientists.

70

year method worst case discovered by

1951 simplex E3 U Dantzig

1955 augmenting path E2 U Ford-Fulkerson

1970 shortest augmenting path E3 Dinitz, Edmonds-Karp

1970 fattest augmenting path E2 log E log( E U ) Dinitz, Edmonds-Karp

1977 blocking flow E 5/2 Cherkasky

1978 blocking flow E 7/3 Galil

1983 dynamic trees E2 log E Sleator-Tarjan

1985 capacity scaling E2 log U Gabow

1997 length function E3/2 log E log U Goldberg-Rao

2012 compact network E2 / log E Orlin

? ? E ?

maxflow algorithms for sparse digraphs with E edges, integer capacities between 1 and U



Maximum flow algorithms:  practice

Warning.  Worst-case order-of-growth is generally not useful for predicting 

or comparing maxflow algorithm performance in practice.

Best in practice.  Push-relabel method with gap relabeling: E 3/2.

71

EUROPEAN 
JOURNAL 

OF OPERATIONAL 
RESEARCH 

E L S E V I E R  European Journal of Operational Research 97 (1997) 509-542 

T h e o r y  a n d  M e t h o d o l o g y  

Computational investigations of maximum flow algorithms 
R a v i n d r a  K .  A h u j a  a, M u r a l i  K o d i a l a m  b, A j a y  K .  M i s h r a  c, J a m e s  B .  O r l i n  d, .  

a Department t~'lndustrial and Management Engineering. Indian Institute of Technology. Kanpur, 208 016, India 
b AT& T Bell Laboratories, Holmdel, NJ 07733, USA 

c KA'F-Z Graduate School of Business, University of Pittsburgh, Pittsburgh, PA 15260, USA 
d Sloun School of Management, Massachusetts Institute of Technology. Cambridge. MA 02139. USA 

Received 30 August 1995; accepted 27 June 1996 

A b s t r a c t  

The maximum flow algorithm is distinguished by the long line of successive contributions researchers have made in 
obtaining algorithms with incrementally better worst-case complexity. Some, but not all, of these theoretical improvements 
have produced improvements in practice. The purpose of this paper is to test some of the major algorithmic ideas developed 
in the recent years and to assess their utility on the empirical front. However, our study differs from previous studies in 
several ways. Whereas previous studies focus primarily on CPU time analysis, our analysis goes further and provides 
detailed insight into algorithmic behavior. It not only observes how algorithms behave but also tries to explain why 
algorithms behave that way. We have limited our study to the best previous maximum flow algorithms and some of the 
recent algorithms that are likely to be efficient in practice. Our study encompasses ten maximum flow algorithms and five 
classes of networks. The augmenting path algorithms tested by us include Dinic's algorithm, the shortest augmenting path 
algorithm, and the capacity-scaling algorithm. The preflow-push algorithms tested by us include Karzanov's algorithm, three 
implementations of Goldberg-Tarjan's algorithm, and three versions of Ahuja-Orlin-Tarjan's excess-scaling algorithms. 
Among many findings, our study concludes that the preflow-push algorithms are substantially faster than other classes of 
algorithms, and the highest-label preflow-push algorithm is the fastest maximum flow algorithm for which the growth rate in 
the computational time is O(n LS) on four out of five of our problem classes. Further, in contrast to the results of the 
worst-case analysis of maximum flow algorithms, our study finds that the time to perform relabel operations (or constructing 
the layered networks) takes at least as much computation time as that taken by augmentations and/or  pushes. © 1997 
Published by Elsevier Science B.V. 

1. I n t r o d u c t i o n  

The maximum flow problem is one of  the most 
fundamental problems in network optimization. Its 
intuitive appeal,  mathematical simplicity, and wide 
applicabil i ty has made it a popular research topic 

* Corresponding author. 

0377-2217/97/$17.00 © 1997 Published by Elsevier Science B.V. All 
PII S0377-2217(96)00269-X 

among mathematicians,  operations researchers and 
computer  scientists. 

The maximum flow problem arises in a wide 
variety of  situations. It occurs directly in problems as 
diverse as the flow of  commodit ies  in pipeline net- 
works,  parallel machine scheduling, distributed com- 
puting on multi-processor computers,  matrix round- 
ing problems,  the baseball  el imination problem, and 
the statistical security of  data. The maximum flow 
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On Implement ing  Push-Re labe l  M e t h o d  
for the M a x i m u m  Flow Problem 

Boris V. Cherkassky 1 and Andrew V. Goldberg 2 
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Krasikova St. 32, 117418, Moscow, Russia 
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Abst rac t .  We study efficient implementations of the push-relabel method 
for the maximum flow problem. The resulting codes are faster than the 
previous codes, and much faster on some problem families. The speedup 
is due to the combination of heuristics used in our implementations. We 
also exhibit a family of problems for which the running time of all known 
methods seem to have a roughly quadratic growth rate. 

1 I n t r o d u c t i o n  

The rnaximum flow problem is a classical combinatorial problem that  comes up 
in a wide variety of applications. In this paper we study implementations of the 
push-rdabel [13, 17] method for the problem. 

The basic methods for the maximum flow problem include the network sim- 
plex method of Dantzig [6, 7], the augmenting path method of Ford and F~lker- 
son [12], the blocking flow method of Dinitz [10], and the push-relabel method 
of Goldberg and Tarjan [14, 17]. (An earlier algorithm of Cherkassky [5] has 
many features of the push-relabel method.) The best theoretical time bounds 
for the maximum flow problem, based on the latter method, are as follows. An 
algorithm of Goldberg and Tarjan [17] runs in O(nm log(n2/m)) time, an algo- 
r i thm of King et. al. [21] runs in O(nm + n TM) time for any constant e > 0, 
an algorithm of Cheriyan et. al. [3] runs in O(nm + (n logn)  2) time with high 
probability, and an algorithm of Ahuja et. al. [1] runs in O ( a m  log (~ - -~  + 2 ) )  
time. 

Prior to the push-relabel method, several studies have shown that  Dinitz' 
algorithm [10] is in practice superior to other methods, including the network 
simplex method [6, 7], Ford-giflkerson algorithm [11, 12], Karzanov's algorithm 
[20], and Tarjan's algorithm [23]. See e.g. [18]. Several recent studies (e.g. [2, 

* Andrew V. Goldberg was supported in part by NSF Grant CCR-9307045 and a 
grant from Powell Foundation. This work was done while Boris V. Cherkassky was 
visiting Stanford University Computer Science Department and supported by the 
above-mentioned NSF and Powell Foundation grants. 



Summary

Mincut problem. Find an st-cut of minimum capacity.

Maxflow problem. Find an st-flow of maximum value.

Duality.  Value of the maxflow = capacity of mincut.

Proven successful approaches.

・Ford-Fulkerson (various augmenting-path strategies).

・Preflow-push (various versions).

Open research challenges.  

・Practice:  solve real-word maxflow/mincut problems in linear time.

・Theory:  prove it for worst-case inputs.

・Still much to be learned!
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