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Announcements

Exam Regrades

・Due by Wednesday’s lecture.

Teaching Experiment: Dynamic Deadlines (WordNet)

・Right now, WordNet is due at 11 PM on April 8th.

・Starting Tuesday at 11 PM:

– Every submission that passes all Dropbox tests shortens the time 

limit by 30 minutes.

– Maximum of 12 hours per day.

– 3 hour grace period still applies.

・Email will be sent out every night at midnight with new deadline.

・I am lying.

“Dynamic Deadlines for Encouraging Earlier Participation on Assignments,” Garcia, Dan. SIGCSE 2013

http://db.grinnell.edu/sigcse/sigcse2013/Program/viewAcceptedSession.asp?sessionID=7220
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Given.  Undirected graph G with positive edge weights (connected).

Def.  A spanning tree of G is a subgraph T that is connected and acyclic.

Goal.  Find a min weight spanning tree.

Minimum spanning tree and edge weighted graphs

graph G
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Given.  Undirected graph G with positive edge weights (connected).

Def.  A spanning tree of G is a subgraph T that is connected and acyclic.

Goal.  Find a min weight spanning tree.

Brute force.  Try all spanning trees? There are ~VV of them.

Minimum spanning tree

spanning tree T:  cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7
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Drawing conventions
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Textbook Convention.  Edges are drawn with length proportional to weight.

Constraint.  This convention constrains the set of possible graphs.
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Allowable graph

Can be drawn with length = weight

Allowable graph

Cannot be drawn with length = weight



Drawing convention

Textbook Convention #2.  Edges are straight lines and never cross.

Constraint.  This convention constrains the set of possible graphs.
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http://en.wikipedia.org/wiki/File:Complete_graph_K7.svg

Textbook graphs typically avoid crossings because they’re hard to read



Drawing convention

Textbook Convention #2.  Edges are straight lines and never cross.

Constraint.  This convention constrains the set of possible graphs.

Q: How hard is it to determine whether a graph can be redrawn in a plane?
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http://www.cs.princeton.edu/courses/archive/spring13/cos226/studyGuide.html



Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm demo
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm demo
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.

11

Kruskal's algorithm demo
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm demo
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm demo
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Q: Which edge comes next?

A. 4-5         [127350]
B. 4-0         [127809]
C. 2-0         [127963]

pollEv.com/jhug              text to 37607



Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm demo

0-7  0.16

2-3  0.17

1-7  0.19

0-2  0.26
5

4

7

1
3

0

2

6

in MST

does not create a cycle

Q: Which edge comes next?

C. 2-0         [127963]



Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm demo
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle.
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Kruskal's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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Q: Which edge is added next to the MST?

A. 2-3      [149931]             C. 6-0       [149934]
B. 1-7      [149933]

pollEv.com/jhug              text to 37607



・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.

27

Prim's algorithm demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm demo
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MST
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Q: What is the weight of the MST?

A. 45     [540123]              D. 60       [520105]
B. 50     [540124]              E. 65       [370101]
C. 55     [520104]             

pollEv.com/jhug              text to 37607



MST
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C. 55
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Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property.  Given any cut, the crossing edge of min weight is in the MST.

Cut property

32

crossing edge separating

gray and white vertices

minimum-weight crossing edge

must be in the MST



Cut property:  correctness proof
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Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property.  Given any cut, the crossing edge of min weight is in the MST.

Pf.  Suppose min-weight crossing edge e is not in the MST.

・Adding e to the MST creates a cycle.

・Some other edge f in cycle must be a crossing edge.

・Removing  f and adding e is also a spanning tree.

・Since weight of e is less than the weight of f,
that spanning tree is lower weight.

・Contradiction.   ▪

e

the MST does

not contain e

adding e to MST

creates a cycle

f



Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property
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Q: How many distinct cuts are there for the graph above?

A. 7           [229703]           D. 16          [229801]
B. 14          [229704]           E. 30          [229802]
C. 15          [229705]           F. 32          [229803]

Extra: How does the number of distinct cuts grow with V for a general graph?

pollEv.com/jhug              text to 37607



Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property
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Q: How many distinct cuts are there for the graph above?  C. 15

Choice of cut is basically a 5 bit binary number: 32 total choices. 

Two of these involve an empty set. Total -> 30. 

Half are redundant (e.g. 00100 is the same thing as 11011). Total -> 15.



Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property
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Q: How many distinct cuts are there for the graph above?      C. 15

Extra: How does the number of distinct cuts grow with V for a general graph?

2V-1-1



226 MST algorithms

Fundamental Idea

・Our algorithms grow an MSSapling until it becomes a full MST.

・The MSSapling starts as V disjoint components.

・Each step of the algorithm connects two MSSapling components.

– Given 2 cuts, always connect by the smallest connecting edge.

– This smallest edge belongs to MST by cut property.

– Each connection reduces number of components by 1.

・Once the MSSapling has 1 component, it is the MST.

37



Greedy MST algorithm:  correctness proof

Proposition. Once the MSSapling has 1 component, it is the MST.

Pf.  

・Any edge in the MSSapling is in the MST (via cut property).

・Fewer than V - 1 black edges ⇒ There is more than one component.

38

fewer than V-1 edges colored black a cut with no black crossing edgesfewer than V-1 edges colored black a cut with no black crossing edges
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226 MST algorithms

Fundamental Idea

・Our algorithms grow an MSSapling until it becomes a full MST.

・The MSSapling starts as V disjoint components.

・Each step of the algorithm connects two MSSapling components.

– Given 2 cuts, always connect by the smallest connecting edge.

– This smallest edge belongs to MST by cut property.

– Each connection reduces number of components by 1.

・Once the MSSapling has 1 component, it is the MST.

Kruskal’s and Prim’s

・Specific ways to pick our two MSSapling components.

40



Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle         

(cycle equivalent to having a black crossing edge).

41

Kruskal's algorithm demo

5

4

7

1
3

0

2

6

0-7  0.16

2-3  0.17

1-7  0.19

0-2  0.26

5-7  0.28

1-3  0.29

1-5  0.32

2-7  0.34

4-5  0.35

1-2  0.36

4-7  0.37

0-4  0.38

6-2  0.40

3-6  0.52

6-0  0.58

6-4  0.93

graph edges

sorted by weight

an edge-weighted graph



Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle         

(cycle equivalent to having a black crossing edge).
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle         

(cycle equivalent to having a black crossing edge).
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle         

(cycle equivalent to having a black crossing edge).
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Kruskal's algorithm demo
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A. 1       [219103]         D. 4       [602202]
B. 2       [219104]         E. 5       [602302]
C. 3       [602201]

pollEv.com/jhug              text to 37607



Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle         

(cycle equivalent to having a black crossing edge).
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Kruskal's algorithm demo
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Consider edges in ascending order of weight.

・Add next edge to tree T unless doing so would create a cycle         

(cycle equivalent to having a black crossing edge).
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Kruskal's algorithm demo
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Kruskal’s algorithm

・Given a collection of all the edges in a graph:

– Take out the minimum edge.

– Add this edge to the MST as long as no cycle is created.

Challenges.  

・What is the smallest weight edge that has not been considered?

・Would adding edge v–w to tree T create a cycle?

In Groups of 3.

・Choose appropriate data structures and algorithms to solve 

these two subproblems.

・Extra task: How much time does your scheme take to perform 

each task above? To build the entire MST?

48

Kruskal's algorithm implementation
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Challenges.  

・What is the smallest weight edge that has not been considered?

– MinPQ<Edge> - compared by weight

– Edge[] - sorted (comparing by weight)

・Would adding edge v–w to tree T create a cycle?

– [array that tracks connected components], a.k.a. Union find

– DFS based graph search every time [very slow]

– DYNAMIC CONNECTIVITY - UF is fast, DFS is slow

・Calls which interact with edges:

– int v = e.either();

– int w = e.other(v);

– mst.enqueue(e);

49

Debrief - which data structures should we use?
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Kruskal's algorithm:  Java implementation  -- live coding answer.

public class KruskalMST
{
   private Queue<Edge> mst = new Queue<Edge>();

   public KruskalMST(EdgeWeightedGraph G)
   {

UF uf = new UF(G.V());
MinPQ<Edge> pq = new MinPQ<Edge>();

for (Edge e : G.edges())
pq.insert(e);

while (!pq.isEmpty() && mst.size() == G.V()-1) {
Edge e = pq.delMin();
int v = e.either(); int w=e.other(v);
if (uf.connected(v, w))

continue;
uf.union(v, w); mst.enqueue(e);

}
   }

   public Iterable<Edge> edges()
   {  return mst;  }
}



build priority queue

(or sort)

51

Kruskal's algorithm:  Java implementation  -- (book implementation)

public class KruskalMST
{
   private Queue<Edge> mst = new Queue<Edge>();

   public KruskalMST(EdgeWeightedGraph G)
   {
      MinPQ<Edge> pq = new MinPQ<Edge>();
      for (Edge e : G.edges())
         pq.insert(e);

      UF uf = new UF(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)
      {
         Edge e = pq.delMin();
         int v = e.either(), w = e.other(v); 
         if (!uf.connected(v, w))
         {  
            uf.union(v, w);
            mst.enqueue(e);
         }
      }
   }

   public Iterable<Edge> edges()
   {  return mst;  }
}

greedily add edges to MST

edge v–w does not create cycle

merge sets

add edge to MST



build priority queue

(or sort)
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Kruskal's algorithm:  Java implementation  -- (book implementation)

public class KruskalMST
{
   private Queue<Edge> mst = new Queue<Edge>();

   public KruskalMST(EdgeWeightedGraph G)
   {
      MinPQ<Edge> pq = new MinPQ<Edge>();
      for (Edge e : G.edges())
         pq.insert(e);

      UF uf = new UF(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)
      {
         Edge e = pq.delMin();
         int v = e.either(), w = e.other(v); 
         if (!uf.connected(v, w))
         {  
            uf.union(v, w);
            mst.enqueue(e);
         }
      }
   }

   public Iterable<Edge> edges()
   {  return mst;  }
}

operation frequency time per op

build pq 1
E lg E

could be E

delete-min E lg E

union V log* V

connected E log* V
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Proposition.  Kruskal's algorithm computes MST in time proportional to

E log E  (in the worst case).

Pf.

Remark.  If edges are already sorted, order of growth is E log* V.

Kruskal's algorithm:  running time

recall:  log* V  ≤  5 in this universe

†  amortized bound using weighted quick union with path compression

operation frequency time per op

build pq 1 E log E

delete-min E log E

union V log* V †

connected E log* V †

How do we get time E?

Construct array of edges 

and pass to MinPQ 

constructor.



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ MST Basics, Kruskal, Prim

‣ Why Kruskal and Prim work

‣ Kruskal Implementation

‣ Prim Implementation

‣ Harder Problems

4.3  MINIMUM SPANNING TREES



・Starting with vertex 0.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm



Three flavors of Prim’s

Prim’s algorithm

・Intuitive - easy to discover

・Lazy - easy to code version of human

・Eager - optimized version of human

56



Prim’s algorithm

・In Kruskal’s, picked MSSaplings by tracking all of the edges in 

the entire graph and selecting the smallest one.

・In Prim’s, what is the most natural thing to track?
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Prim’s algorithm

・In Kruskal’s, picked MSSaplings by tracking all of the edges in 

the entire graph and selecting the smallest one.

・In Prim’s, what is the most natural thing to track?

– All outbound edges from core of the MSSapling.
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Prim’s algorithm implementation
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Intuitive Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling.
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Intuitive Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling.
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Intuitive Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling.

– Add to C any outward pointing edges from w.
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Intuitive Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling.

– Add to C any outward pointing edges from w.
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Prim’s algorithm implementation
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Intuitive Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling.

– Add to C any outward pointing edges from w.

– Remove from C any edges v-x, where x is also in the core.
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Prim’s algorithm implementation
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Intuitive Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling.

– Add to C any outward pointing edges from w.

– Remove from C any edges v-x, where x is also in the core.
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Prim’s algorithm implementation
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Intuitive Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling.

– Add to C any outward pointing edges from w.

– Remove from C any edges v-x, where x is also in the core.

・Turns out this algorithm is a pain to implement (not in textbook).
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Prim’s algorithm implementation

5

4

7

1
3

0

2

6

v-w

5

4

7

1
3

0

2

6

v-w



Lazy Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling

– Add to C any outward pointing edges from w.

– Remove from C any edges v-x, where x is also in the core.

・Much easier to implement.
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Prim’s algorithm implementation
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– If it doesn’t create a cycle, otherwise delete v-w.



・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm (lazy) demo
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1-5  0.32

2-7  0.34

4-5  0.35

1-2  0.36

4-7  0.37

0-4  0.38

6-2  0.40

3-6  0.52

6-0  0.58

6-4  0.93

an edge-weighted graph



Lazy Prim’s algorithm

・Given a collection C of all edges outbound from core:

– Add C’s minimum edge v-w to the MSSapling

– Add to C any outward pointing edges from w.

– Remove from C any edges v-x, where x is also in the core.
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Prim’s algorithm implementation

– If it doesn’t create a cycle, otherwise delete v-w.
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Proposition.  Lazy Prim's algorithm computes the MST in time proportional

to E log E and extra space proportional to E (in the worst case).

Pf.

Lazy Prim's algorithm:  running time

operation frequency binary heap

delete min E log E

insert E log E



public class LazyPrimMST
{
   private boolean[] marked;   // MST vertices
   private Queue<Edge> mst;    // MST edges
   private MinPQ<Edge> pq;     // PQ of edges

    public LazyPrimMST(WeightedGraph G)
    {
        pq = new MinPQ<Edge>();
        mst = new Queue<Edge>();
        marked = new boolean[G.V()];
        visit(G, 0);
   
        while (!pq.isEmpty() && mst.size() < G.V() - 1)
        {
           Edge e = pq.delMin();
           int v = e.either(), w = e.other(v);
           if (marked[v] && marked[w]) continue;
           mst.enqueue(e);
           if (!marked[v]) visit(G, v);
           if (!marked[w]) visit(G, w);
        }
   }
}
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Prim's algorithm:  lazy implementation

repeatedly delete the

min weight edge e = v–w from PQ

ignore if both endpoints in T

add v or w to tree

assume G is connected

add edge e to tree



   private void visit(WeightedGraph G, int v)
   {
      marked[v] = true;
      for (Edge e : G.adj(v))
         if (!marked[e.other(v)])
            pq.insert(e);
   }

   public Iterable<Edge> mst()
   {  return mst;  }
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Prim's algorithm:  lazy implementation

for each edge e = v–w, add to

PQ if w not already in T

add v to T



Eager Prim’s algorithm

・Given a collection C of all edges outbound from vertices 

adjacent to core:

– Add C’s minimum edge v-w to the MSSapling.

– Remove vertex w that is closest to core, and add edge ?-w.

– Add to C any outward pointing edges from w.

– Remove from C any edges v-x, where x is also in the core.

– Update distance to each vertex adjacent to core.
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Prim’s algorithm demo



・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm (eager) demo
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・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm (eager) demo

0

5

4

7

1
3
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6

v   edgeTo[]  distTo[]

0      -         - 

7     0–7       0.16       

2     0–2       0.26                   

4     0–4       0.38       

6     6–0       0.58       

vertices on PQ

(sorted by weight)

add vertices 7, 2, 4, and 6 to PQ

IndexMinPQ<Double> pq = new IndexMinPQ<Double>(G.V());

pq.insert(7, 0.16); pq.insert(2, 0.26); ...



・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm (eager) demo
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0-7  1-7  0-2

MST edges

v   edgeTo[]  distTo[]

0      -         -

7     0–7       0.16       

1     1–7       0.19                   

2     0–2       0.26                   

3     1–3       0.29       

5     5–7       0.28                   

4     0–4       0.38       

6     6–0       0.58       

decrease key of vertex 3

from 0.29 to 0.17

decrease key of vertex 6

from 0.58 to 0.40

0.172-3

0.406-2
now better connections

to 0 and 1 (discard)

pq.change(3, 0.17); pq.change(6, 0.4);



・Start with vertex 0 and greedily grow tree T.

・Add to T the min weight edge with exactly one endpoint in T.

・Repeat until V - 1 edges.
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Prim's algorithm (eager) demo
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0-7  1-7  0-2  2-3  5-7  4-5  6-2

MST edges

v   edgeTo[]  distTo[]

0      -         -

7     0–7       0.16       

1     1–7       0.19                   

2     0–2       0.26                   

3     2–3       0.17       

5     5–7       0.28                   

4     4–5       0.35       

6     6–2       0.40       



77

Depends on PQ implementation:  V insert, V delete-min, E decrease-key.

Bottom line.

・Array implementation optimal for dense graphs.

・Binary heap much faster for sparse graphs.

・4-way heap worth the trouble in performance-critical situations.

・Fibonacci heap best in theory, but not worth implementing.

Eager Prim's algorithm:  which priority queue?

† amortized

PQ implementation insert delete-min decrease-key total

unordered array 1 V 1 V2

binary heap log V log V log V E log V

d-way heap
(Johnson 1975)

d logd V d logd V logd V E logE/V V

Fibonacci heap
(Fredman-Tarjan 1984)

1 † log V † 1 † E + V log V



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ MST Basics, Kruskal, Prim

‣ Why Kruskal and Prim work

‣ Kruskal Implementation

‣ Prim Implementation

‣ Harder Problems

4.3  MINIMUM SPANNING TREES



B level problems
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・True or false: The minimum weight edge from every node must be part 

of the MST.

・List the weights of the other edges in the MST: 

            10   ___  ___  ___  ___  ___    

・What are the possible values for the weights of x, y, and z?

Suppose the that the MST of the graph below contains the edges with 

weights x, y, and z.



B level problems
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・True or false: The minimum weight edge from every node must be part 

of the MST - true by cut property!

・List the weights of the other edges in the MST: 

            10   _30  _50  _20  _40  100    

・What are the possible values for the weights of x, y, and z?

Suppose the that the MST of the graph below contains the edges with 

weights x, y, and z.



B level problems

81

・True or false: The minimum weight edge from every node must be part 

of the MST - true by cut property!

・List the weights of the other edges in the MST: 

            10   _30  _50  _20  _40  100    

・What are the possible values for the weights of x, y, and z?

– x <= 110, y <= ?

Suppose the that the MST of the graph below contains the edges with 

weights x, y, and z.



B level problems

82

・True or false: The minimum weight edge from every node must be part 

of the MST - true by cut property!

・List the weights of the other edges in the MST: 

            10   _30  _50  _20  _40  100    

・What are the possible values for the weights of x, y, and z?

– x <= 110, y <= 60, 

Suppose the that the MST of the graph below contains the edges with 

weights x, y, and z.



B level problems
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・True or false: The minimum weight edge from every node must be part 

of the MST - true by cut property!

・List the weights of the other edges in the MST: 

            10   _30  _50  _20  _40  100    

・What are the possible values for the weights of x, y, and z? 

– x <= 110, y <= 60, z <= 80

Suppose the that the MST of the graph below contains the edges with 

weights x, y, and z.



A level problems

・Suppose you know the MST of G. Now a new edge v-w of weight c is 

added to G, resulting in a new graph G’. Design a O(V) algorithm to 

determine if the MST for G is also an MST for G’.

・Bonus: Given a graph G and its MST, if we remove an edge from G that is 

part of the MST, how do we find the new MST in O(E) time?
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A level problems

・Suppose you know the MST of G. Now a new edge v-w of weight c is 

added to G, resulting in a new graph G’. Design a O(V) algorithm to 

determine if the MST for G is also an MST for G’.

・Bonus: Given a graph G and its MST, if we remove an edge from G that is 

part of the MST, how do we find the new MST in O(E) time?

85

5

4

7

1
3

0

2

6

c
Hint: Consider the blue path.



A level problems

・Suppose you know the MST of G. Now a new edge v-w of weight c is 

added to G, resulting in a new graph G’. Design a O(V) algorithm to 

determine if the MST for G is also an MST for G’.

・If any edge on the blue path is longer than c:

– Replace that edge with c - you get a new MST with shorter distance.

・If every edge on the blue path is shorter than c:

– Then we know original MST was the best.

・Finding the blue path: Run DFS from one of c’s vertices to the other, only 

taking steps along the MST.
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A level problems

・Given a graph G and its MST, if we remove an edge from G that is part of 

the MST, how do we find the new MST in O(E) time?
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