ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

4.2 DIRECTED GRAPHS

4.2 DIRECTED GRAPHS
» introduction

» introduction
» digraph API
Algorithms

» digraph search

Algorithms .
’ » topological sort
» strong components
g p ROBERT SEDGEWICK | KEVIN WAYNE
http://algs4.cs.princeton.edu

OURTH EDITI

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Directed graphs Road network
Digraph. Set of vertices connected pairwise by directed edges. Vertex = intersection; edge = one-way street.
- —— ¥ . & 7
t § 5 N
5 g org‘és\ o8
= Neiys 0 Ef S
ry St - £) N
vertex of t ' 4
outdegree 4 Zaight s¢ t
= N
and indegree 2) Laightst 7
g G,
g —~ “an,
5] # . e o = La:gmzs|4 / / 95,
beri s - 2 |2 24
o | Ay DOV :
g 5 N 3 /
. H 5 2 Z York s T Y K
directed path 8 2 s @ o Q;é' 4 & >
5 2 4
from0to2 ol 2 SRS ' A 1S /c 4
) Enicsson ¢ \‘ 0 %
Woar t % gea% = t D%"’&/ # S
] 3 S %, Y, o"%@
= -~ N M] X X
f 15 ost Nioors s P /) oy
H Y o N
) F E] | & = (M]
<«—— directed cycle i ranklin st~ frankings) 5 3 5/ g, 7
g = w57 g;"’ INNELY/ ors,
& N 5\ S ﬁ
T — TN g g 77
ST —— oo, g 5 t 2 %
f 4 7 %, " X N
2 v,
= 7 & ©2008 Google - Map data ©20G8 Sanborn, NAVTEQ™ - Terms of Use
3

Taxi flow patterns (Uber)

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics

Bonita Cove Treasure
Island

Golden Gate

0.03r m SF: Financial District
M NYC: Financial District

Proportion of Demand

Sun M:Jn Tue Wed Tr:u F:i slat s:m
Day of Week (beginning at 0:00)

Recreation Area

Uber cab service
* Left Digraph: Color is the source neighborhood (no arrows).
* Right Plot: Digraph analysis shows financial districts have similar demand.

Reverse engineering criminal organizations (LogAnalysis)

“The analysis of reports supplied by mobile phone service providers makes it possible to reconstruct
the network of relationships among individuals, such as in the context of criminal organizations. It
is possible, in other terms, to unveil the existence of criminal networks, sometimes called rings,

identifying actors within the network together with their roles” — Cantanese et. al

Field Description

IMET IMEI code MS

called called user

calling calling user

date/time start | date/time start calling (GMT)
date/time end date/time end calling (GMT)
type sms, mms, voice, data ete.
IMSI calling or called SIM card

CGI Lat. long. BTS company

Table 1 An example of the structure of a log file.

s Tdere

Forensic Analysis of Phone Call Networks, Salvatore Cantanese
http://arxiv.org/abs/1303.1827

Combinational circuit

Vertex = logical gate; edge = wire.

out

WordNet graph

Vertex = synset; edge = hypernym relationship.

event

happening occurrence occurrent natural_event

miracle
act human_action human_activity

change alteration modification miracle

’\ \ group_action

damage harm impairment transition increase forfeit forfeiture sacrifice action
T resistance opposition transgression
leap jump saltation jumpleap
change
demotion variation

motion movement move

locomotion travel descent

runrunning jump parachuting

http://wordnet.princeton.edu dash sprint

The McChrystal Afghanistan PowerPoint slide

Afghanistan Stability / COIN Dynamics ‘%, _ signfcant

=" Delay

OUTSIDE SUPPORT _

WORKING DRAFT - V3

Page 22

http:/ /www.guardian.co.uk/news/datablog/2010/apr/29/mcchry i Pt poil lid

Digraph applications

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection
web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump

Some digraph problems

Path. Is there a directed path from s to ¢?

>~

.~

R e e B D S S

e 0" @ >0 @ >0« @

-

Shortest path. What is the shortest directed path from sto ¢?

Topological sort. Can you draw a digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» digraph API

Digraph API

public class Digraph

Digraph(int V)

create an empty digraph with V vertices
Digraph(In 1in) create a digraph from input stream
void addEdge(int v, int w) add a directed edge v—w
Iterable<Integer> adj(int v) vertices pointing from v
int VO number of vertices
int EQ number of edges
Digraph reverse()

reverse of this digraph

String toString() string representation

In in = new In(args[01); read digraph from
Digraph G = new Digraph(in); input stream

for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v)) T
StdOut.printin(v + "->" + w);

print out each

edge (once)

Digraph API

% java Digraph tinyDG.txt

tinyDG. txt
Vg 0->5
2 <t 0->1
4 2 2->0
2 3 -
;3 2
6 0 . >
0 1 @ o e 3->2
15 13 4->3
56 ! O, 4-52
9 10 5->4
NG aaa |
7 9)
10 12 11->4
11 g 11->12
3k 12-9
6 8
8 6
Ir.l in = new In(args[OJ);_ read digraph from
Digraph G = new Digraph(in); input stream

for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v)) T
StdOut.printin(v + "->" + w);

print out each

edge (once)

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

Eoze|

B0

-]

© ©® N O U A W N B O

®

i
=

Ju
N

Do you slumber?

Suppose we are given an arbitrary Digraph G and a path of length V given
by int[] P.

e

0542316879101112

N
a

(6)

@ &
o

pollEv.com/jhug text to 37607

Q: What is the worst case run time to check validity of a path P for a

general graph with E edges and V vertices?
A. E [41138] C. EV [41146]
B. V [41142] D. E+V [41182]

Do you slumber?

Suppose we are given an arbitrary Digraph G and a path of length V given
by int[] P.

N
a

% (6)=(®
;

(4

Oz D12 .

0542316879101112

pollEv.com/jhug text to 37607

Q: What is the worst case run time to check validity of a path P for a

general graph with V vertices?
A. 1 C. V2
B. V

Adjacency-lists graph representation (review): Java implementation

public class Graph

{
private final int V;
private final Bag<Integer>[] adj; <«<—+— adjacency lists

public Graph(int V)
{ «_L create empty graph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>(Q);

public void addEdge(int v, int w) g 2ddedoevw

{
adj[v].add(w);
adj[w].add(v);

. . . iterator for vertices
public Iterable<Integer> adj(int v)

. adjacent to v
{ return adj[v]; 1}

Adjacency-lists digraph representation: Java implementation

public class Digraph

{
private final int V;
private final Bag<Integer>[] adj; <«<—t— adjacency lists

public Digraph(int V)
{ «_L create empty digraph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; Vv++)

adj[v] = new Bag<Integer>(Q);

I
public void addEdge(int v, int w) g 2ddedoevow
{
adj[v].add(w);
)
pr B iterator for vertices

public Iterable<Integer> adj(int v)

. pointing from v
{ return adj[v]; }

Digraph representations

In practice. Use adjacency-lists representation.
» Algorithms based on iterating over vertices pointing from v.
» Real-world digraphs tend to be sparse.

AN

huge number of vertices,
small average vertex degree

. insert edge edge from iterate over vertices
representation space e
from v tow v to w? pointing from v?
E 1 E

list of edges E
adjacency matrix V2 1t 1 \
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

4.2 DIRECTED GRAPHS

Algorithms » digraph search

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Reachability

Problem. Find all vertices reachable from s along a directed path.
S

Limdis

| *

NNBRERE

Depth-first search in digraphs

Same method as for undirected graphs.
* Every undirected graph is a digraph (with edges in both directions).
» DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked
vertices w pointing from v.

Difficulty level.
» Exactly the same problem for computers.
» Harder for humans than undirected graphs.
- Edge interpretation is context dependent!

The man-machine

\ 4 o >0 @< @<

Difficulty level.
» Exactly the same problem for computers.
* Harder for humans than undirected graphs.
- Edge interpretation is context dependent!

Depth-first search demo Depth-first search demo
42
To visit a vertex v: @ P To visit a vertex v:
* Mark vertex v as visited. 32 * Mark vertex v as visited.
Mark vert ted Mark vert ted
» Recursively visit all unmarked vertices pointing from v. 6—0 » Recursively visit all unmarked vertices pointing from v.
0—1
2—0
11-12 v marked[] edgeTol]
12—-9 0 T
9—-10 1 T 0
911 G reachable 2 > | T 3
from vertex 0
8—9 3 T 4
10—-12 4 T 5
11-4 5 T 0
g \6 .
3—5 4 7 F -
6—8 8 [F -
8—6 9 [F =
5—4 10 F -
a directed graph 0—5 reachable from 0 11 F =
64 2 12 F -
Depth-first search (in undirected graphs) Depth-first search (in directed graphs)
Recall code for undirected graphs. Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]
public class DepthFirstSearch public class DirectedDFS
{ {
private boolean[] marked; <«—— true if connected to s private boolean[] marked; <«—— true if path from s
pubTlic DepthFirstSearch(Graph G, int s) public DirectedDFS(Digraph G, int s)
{ {
marked = new boolean[G.V()]; ——p— constructormarks marked = new boolean[G.V()]; —— Crmebieenarks
dfs(G, s); vertices connected to s dfs(G, s); vertices reachable from s
} }
private void dfs(Graph G, int v) <——T— recursive DFS does the work private void dfs(Digraph G, int v) <——T— recursive DFS does the work
{ {
marked[v] = true; marked[v] = true;
for (int w : G.adj(v)) for (int w : G.adj(v))
if (!marked[w]) dfs(G, w); if (!marked[w]) dfs(G, w);
} }
. . . . client can ask whether any client can ask whether any
public boolean visited(int v) «— ’ public boolean visited(int v) «— ’
{ return marked[v]; } vertex is connected to s { return marked[v]; } vertex is reachable from s
} }
27

Reachability application: program control-flow analysis

Every program is a digraph.
* Vertex = basic block of instructions (straight-line program).
* Edge = jump.

Dead-code elimination /‘if\ D
- - — 110 *
Find (and remove) unreachable code. S I Qe
e Cow.java:5: unreachable statement / ‘ e -
[oo - =
e | =%
H H 1 | 1121314151810 e
Infinite-loop detection. “ | | \ T
Determine whether exit is unreachable. o | eopuom \t\
* Trivial? ‘ ‘\ IRT G
18 | T
* Doable by student? “ e |
‘ | e
+ Doable by expert? [A = b
\ HRBEHot 46 <= 13
* Intractable? | s \ gee
* Unknown? I S EETTn
* Impossible? N

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
* Vertex = object.
» Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

17
g

8l

*j 'ft\\

o
P!

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
e Mark: mark all reachable objects.
* Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

S1004

"

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
v+ Reachability.
* Path finding.
* Topological sort.
* Directed cycle detection.

Basis for solving difficult digraph problems.
« 2-satisfiability.
* Directed Euler path.
» Strongly-connected components.

SIAM J.
Vol. 1, No.2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*
ROBERT TARJANt

Abstract, The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
KV 4 kE + ky Jka,and ky, where V. tices and E
of edges of the graph being examined.

Breadth-first search in digraphs

Same method as for undirected graphs.
* Every undirected graph is a digraph (with edges in both directions).
* BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to £+ V.

Directed breadth-first search demo

Repeat until queue is empty: @
* Remove vertex v from queue.
* Add to queue all unmarked vertices pointing from v and mark them.

tinyDG2. txt
V — 6

m

o
wal—\NN-l;O\

O W H»O K WNWU

graph G

Directed breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

* Add to queue all unmarked vertices pointing from v and mark them.

@ > v edgeTo[] distTo[]
0 = 0
1 0 1
2 0 1
3 4 3
‘E" 4 2 2
(s) (+) s 3 4

done

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source
vertices, find shortest path from any vertex in the set to each other vertex.

Ex. S={1,7,10}.
» Shortest path to 4 is 7—=6—4. 6
» Shortest path to 5 is 7—=6—0—5. e

®

« Shortest path to 12 is 10—12.

RO

B

e

Q. How to implement multi-source shortest paths algorithm?
A. Use BFS, but initialize by enqueuing all source vertices.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
* Choose root web page as source s.

* Maintain a Queue of websites to explore.
* Maintain a SET of discovered websites. ,\
* Dequeue the next website and enqueue

websites to which it links

(provided you haven't done so before).

Q. Why not use DFS?

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(Q); <«—+—— queue of websites to crawl
SET<String> marked = new SET<String>(Q); <«—+—— set of marked websites

String root = "http://www.princeton.edu";

queue.enqueue(root); <«——T— start crawling from root website
marked.add(root) ;

while (!queue.isEmpty())
{

String v = queue.dequeue();
StdOut.printin(v); T
In in = new In(Vv);

String input = in.readA11Q;

read in raw html from next

website in queue

String regexp = "http://QO\\w+\\.)+Q\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);

while (matcher.find())))
{ [crude pattern misses relative URLs]

use regular expression to find all URLs

in website of form http://xxx.yyy.zzz

String w = matcher.group(Q);
if (!marked.contains(w))
{

marked.add(w) ;

queue.enqueue(w) ; —
} on the queue

if unmarked, mark it and put

BFS Webcrawler Output

http://www.princeton.edu

http://www.w3.org

http://ogp.me
http://giving.princeton.edu

http://www.princetonartmuseum.org

http://www.goprincetontigers.com

http://library.princeton.edu

http://helpdesk.princeton.edu

http://tigernet.princeton.edu

http://alumni.princeton.edu

http://gradschool.princeton.edu

http://vimeo.com
http://princetonusg.com

http://artmuseum.princeton.edu

http://jobs.princeton.edu

http://odoc.princeton.edu

http://blogs.princeton.edu

http://www.facebook.com

http://twitter.com

http://www.youtube.com

http://deimos.apple.com

http://geprize.org

http://en.wikipedia.org

DFS Webcrawler Output

http://www.princeton.edu

http://static.googleusercontent.com

http://deimos.apple.com [dead end]

http://searchresearch1.blogspot.com

http://www.youtube.com

http://feedburner.google.com

http://www.google.com

http://www.dot.ca.gov

http://news.google.com

http://www.getacross80.com

http://csi.gstatic.com

http://www.TahoeRoads.com

http://googlenewsblog.blogspot.com

http://www.lLakeTahoeTransit.com

http://labs.google.com

http://www.laketahoe.com

http://groups.google.com

http://ethel.tahoeguide.com

http://img1.blogblog.com

http://feeds.feedburner.com

http://buttons.googlesyndication.com

http://fusion.google.com

http://insidesearch.blogspot.com

http://agoogleaday.com

40

4.2 DIRECTED GRAPHS

Algorithms

» fopological sort

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

0. Algorithms

1. Complexity Theory
. Artificial Intelligence
. Intro to CS

. Cryptography

. Scientific Computing

[<2 BNV, R N UV N

. Advanced Programming

tasks

e

@)= §D

Poc

precedence constraint graph

CFO-O -G

feasible schedule

42

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

0—-5 02
0—-1 3-6

35 3-4 @)(5) 9

5-4 64 /
6—0 32 ®

directed edges DAG

Solution. DFS. What else?

CFO-O -G

topological order

43

Topological sort demo

* Run depth-first search.

» Return vertices in reverse postorder. @

a directed acyclic graph

44

Topological sort intuitive proof

* Run depth-first search.
* Return vertices in reverse postorder.
* Why does it work?
- Last item in postorder has indegree 0. Good starting point.
- Second to last can only be pointed to by last item. Good follow-up.

0
postorder
41 2506 3

topological order
36 0521 4

(6 ; See book / online slides for foolproof full proof.

45

Topological sort demo

A. No

postorder

412506 3

topological order

CFO-O -G

360521 4
O,
GJ
pollEv.com/jhug text to 37607 aneIna ca lordar
Q: Is the reverse postorder the only valid topological order for this graph?
[452392]
[452393]

B. Yes

46

Topological sort demo

0
postorder
412506 3

topological order

CFO-O -G

3605214

pollEv.com/jhug text to 37607

topological order
Q: Is the reverse postorder the only valid topological order for this graph?
A. No [452392]

Example: Could move 1 down one step. 0 — 1 still points up.

47

Depth-first search order

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder(Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.VO; v++)
if (Imarked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w]) dfs(G, w);
reversePost.push(v);

}

public Iterable<Integer> reversePost()
{ return reversePost; }

returns all vertices in
“reverse DFS postorder”

48

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

« If directed cycle, topological order impossible.

* If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

49

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java

{ A.java:1l: cyclic inheritance
involving A
} public class A extends B { }
A
1 error

public class B extends C

{
}

public class C extends A
{

3

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Workbook1
< A B i D
1 "=B1+1" "=C1 + 1" "=Al + 1"
2
3
4
5
6
Microsoft Excel cannot calculate a formula.
4 o
Cell references in the formula refer to the formula's
8 © result, creating a circular reference. Try one of the
following
9
« If you accidentally created the circular reference, click
10 OK. This will display the Circular Reference toolbar and
help for using it to correct your formula.
11 « To continue leaving the formula as it is, click Cancel.
ancel)
12 C | OK
13
14
15
16
17
18

| Sheetl Sheet2 ' Sheet3 J

4.2 DIRECTED GRAPHS

Algorithms

» sfrong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v. Every node is strongly connected
to itself.

Key property. Strong connectivity is an equivalence relation:
* vis strongly connected to v.
* If v is strongly connected to w, then w is strongly connected to v.
e If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

Examples of strongly-connected digraphs: 1 strong component

o

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v. Every node is strongly connected
to itself.

O
O

c

text to 37607

Q: How many strong components does a DAG on V vertices and E edges have?
A. 0 [452453] C. E [452460]
B. 1 [452459] D. V [452461]

pollEv.com/jhug

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

3 connected components

connected component id (easy to compute with DFS)

01 2 3 4 5 6 7 8 91011 12
idfJ o 0 0 0 0 0 1 1 1 2 2 2 2
public int connected(int v, int w)
{ return id[v] == id[w]; }

t

constant-time client connectivity query

v and w are strongly connected if there is both a directed

path from v to w and a directed path from w to v

5 strongly-connected components

strongly-connected component id (how to compute?)

4 6
1 3

w| oo
N|©

1 2 3 5 7 10 11 12
id[] 0 1 1 1 4 2 2 2

public int stronglyConnected(int v, 1int w)
{ return id[v] == id[w]; }

A

constant-time client strong-connectivity query

Strongly connected components

Analysis of Yahoo Answers
* Edge is from asker to answerer.
* “Alarge SCC indicates the presence of a community where many users
interact, directly or indirectly.”

Table 1: Summary statistics for selected QA net-

works
Category | Nodes Edges | Avg. | Mutual | SCC
deg. edges
Wrestling | 9,959 | 56,859 | 7.02 1,898 | 13.5%
Program. | 12,538 | 18,311 | 1.48 0 | 0.01%
Marriage | 45,090 | 164,887 | 3.37 179 | 4.73%

Knowledge sharing and yahoo answers: everyone knows something, Adamic et al (2008)

Strongly connected components

Understanding biological control systems
* Bacillus subtilis spore formation control network.
» SCC constitutes a functional module.

comP

rapF phrF

Phosphorylation

Blocks activity

Josh Hug: Qualifying exam talk (2008)

Strong components algorithms: brief history

1960s: Core OR problem.
* Widely studied; some practical algorithms.
» Complexity not understood.

1972: linear-time one-pass DFS algorithm (Tarjan).
» Classic algorithm.
 Level of difficulty: Algs4++.
* Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
» Forgot notes for lecture; developed algorithm in order to teach it!
* Later found in Russian scientific literature (1972).

1990s: easier one-pass linear-time algorithms.
* Gabow: fixed old OR algorithm.
* Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Intuitive solution to finding strongly connected components.

S e =K

o 10,

60

Intuitive solution to finding strongly connected components. Intuitive solution to finding strongly connected components.

Example
Run DFS(1), get the SCC: {1}. 0 B A
Run DFS(0), get {0, 1, 2, 3, 4, 5} - not an SCC.
Run DFS(1), then DFS(0), get SCC {1} and SCC {0, 2, 3, 4, 5}.
EZD (6 =) C
pollEv.com/jhug text to 37607

o 9 Q: Which DFS call should come next?
@ @ A. DFS(7) [397963]
B. DFS(6) or DFS(8) [398061]
61

C. DFS(9), DFS(10), DFS(11), or DFS(12) [398062]

Intuitive solution to finding strongly connected components. Intuitive solution to finding strongly connected components.

Example DFS. Calling DFS wantonly is a problem. Never want to leave your SCC.
Run DFS(1), get the SCC: {1}.
Run DFS(0), get {0, 1, 2, 3, 4, 5} - not an SCC. Starting SCCs. There’s always some set of SCCs with outdegree 0, e.g. {1}.
Run DFS(1), then DFS(0), get SCC {1} and SCC {0, 2, 3, 4, 5}. Calling DFS on any node in these SCCs finds the SCC.

DFS Order. After calling DFS on all starting SCCs, there’s at least one SCC
that only points at the starting SCCs.

first vertex is a sink
e (has no edges pointing from it)
C
@ 0 E 'A
e e D B
Punchline. A Magic Sequence Of DFS calls yields SCC (MSDFSSCC) digraph G and its strong components Treat SCCs as one big node. Kernel DAG.

63 Arrows only connect SCCs. Graph is acyclic.

Kosaraju-Sharir algorithm: intuitive example

Kernel DAG. Topological sort of kernelDAG(G) is A, B, C, D, E.

MSDFSSCC. Call DFS on element from E, D, C, B, A. Valid MSDFSSCC.
For example, DFS(1), DFS(2), DFS(9), DFS(6), DFS(7).

Summary.
» The MSDFSSCC is given by reverse of the topological sort of kernelDAG(G).

first vertex is a sink

e (has no uiqu pointing | fmm it)

B e | FR O

digraph G and its strong components kernel DAG of G. Topological order: A, B, C, D, E.

Kosaraju-Sharir algorithm: intuition (general)

mn?

Kernel DAG. MSDFSSCC is given by reverse of topological sort of kernelDAG(G)

Ll

Reverse Graph Lemma. Reverse of topological sort of kernalDAG(G) is given by
reverse postorder of G® (see book), where G* is G with all arrows flipped around.

Punchline.

* MSDFSSCC: The reverse postorder of GZ.

first vertex is a sink

e (has no uiqu pointing | fmm it)

B e | FRERd

digraph G and its strong components kernel DAG of G (in reverse topological order)

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G-,
Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G-.

digraph G

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G-.
102 45311 9 12 10 6 7 8

reverse digraph GR

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G-.

\Y id[]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7 4
8 3
9 2
10 2
done 11 2
12 2

Kosaraju-Sharir algorithm: intuition

C

9&0

()——()

GoR0
B

digraph G reverse digraph G*

first vertex is a sink
(has no edges pointing from it)

E C ED C
’ 10

B A
2 45 3 11 9 12 10 6 7

kernel DAG of G (in reverse topological order)

8

70

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
* Phase 1: run DFS on G® to compute reverse postorder.
* Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

check unmarked vertices in the order
0123456789101112

reverse postorder for use in second dfs)
102453119121067 38

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6

71

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.
e Phase 1: run DFS on G® to compute reverse postorder.
* Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G
check unmarked vertices in the order
102453119121067 38

dfs(1) dfs(0) dfs(11D) dfs(6) dfs(7)
1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 check 9
dfs(3) dfs(9) dfs(8) 7 done
check 5 check 11 check 6
dfs(2) dfs(10) 8 done
check 0 check 12 check 0
check 3 10 done 6 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

idarray

72

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of
a digraph in time proportional to E + V.

Pf.
* Running time: bottleneck is running DFS twice (and computing GR).
» Correctness: tricky, see textbook (2" printing).
* Implementation: easy!

73

Connected components in an undirected graph (with DFS)

public class CC
{

private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{

marked = new boolean[G.V()];
id = new int[G.VQ];

for (Gint v = 0; v < G.VQ; v++)
if (Imarked[v])

dfs(G, v);
count++;
}

}
}

private void dfs(Graph G, int v)

marked[v] = true;
id[v] = count;
for CGint w : G.adj(v))
if (!marked[w])
dfs(G, w);
3

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

}

74

Strong components in a digraph (with two DFSs)

public class KosarajuSharirSCC

private boolean marked[];
private int[] id;
private int count;

public KosarajuSharirSCC(Digraph G)
{

marked = new boolean[G.V()];

id = new int[G.VQ];

DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
for (int v : dfs.reversePost())

if (Imarked[v])

dfs(G, v);
count++;
}
}
}

private void dfs(Digraph G, int v)
{

marked[v] = true;
id[v] = count;
for CGint w : G.adj(v))
if (!marked[w])
dfs(G, w);
3

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }
}

75

Digraph-processing summary: algorithms of the day

single-source

reachability DFS
in a digraph
top<.)Iog|caI sort DFS
in a DAG
R
strong))
©) /‘ Kosaraju-Sharir
components ©)
in a diaraoh ON DFS (twice)
| grap /, ° e

76

