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Digraph.  Set of vertices connected pairwise by directed edges.
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Directed graphs
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vertex of

outdegree 4

and indegree 2

directed path

from 0 to 2

directed cycle
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Road network

Vertex = intersection; edge = one-way street.
Address Holland Tunnel

New York, NY 10013

©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use

To see all  the details  that  are visible  on the screen,use the
"Print" link next  to the map.



Taxi flow patterns (Uber)

Uber cab service

・Left Digraph: Color is the source neighborhood (no arrows).

・Right Plot: Digraph analysis shows financial districts have similar demand.
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http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

Reverse engineering criminal organizations (LogAnalysis)

“The analysis of reports supplied by mobile phone service providers makes it possible to reconstruct 

the network of relationships among individuals, such as in the context of criminal organizations. It 

is possible, in other terms, to unveil the existence of criminal networks, sometimes called rings, 

identifying actors within the network together with their roles” —  Cantanese et. al

6

Forensic Analysis of Phone Call Networks, Salvatore Cantanese,

http://arxiv.org/abs/1303.1827

Vertex = logical gate; edge = wire.
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Combinational circuit

Vertex = synset; edge = hypernym relationship.
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WordNet graph

http://wordnet.princeton.edu

event

happening occurrence occurrent natural_event

change alteraƟon modiĮcaƟon

damage harm ..impairment transiƟon

leap jump saltaƟon jump leap

act human_acƟon human_acƟvity

group_acƟon

forfeit forfeiture ƐĂĐƌŝĮĐĞ acƟon

change

resistance opposiƟon transgression

demoƟon variaƟon

moƟon movement move

locomoƟon travel

run running

dash sprint

descent

jump parachuƟng

increase

miracle

miracle
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The McChrystal Afghanistan PowerPoint slide

http://www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide
10

Digraph applications

digraph vertex directed edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump

Path.  Is there a directed path from s to t ?

Shortest path.  What is the shortest directed path from s to t ?

Topological sort.  Can you draw a digraph so that all edges point upwards?

Strong connectivity.  Is there a directed path between all pairs of vertices?

Transitive closure.  For which vertices v and w is there a path from v to w ?

PageRank.  What is the importance of a web page?

11

Some digraph problems

s

t

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components

4.2  DIRECTED GRAPHS



13

Digraph API

       public class Digraph       public class Digraph

Digraph(int V)Digraph(int V) create an empty digraph with V vertices

Digraph(In in)Digraph(In in) create a digraph from input stream

void addEdge(int v, int w)addEdge(int v, int w) add a directed edge v→w

Iterable<Integer> adj(int v)adj(int v) vertices pointing from v

int V()V() number of vertices

int E()E() number of edges

Digraph reverse()reverse() reverse of this digraph

String toString()toString() string representation

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++) 
   for (int w : G.adj(v))
      StdOut.println(v + "->" + w);

read digraph from 

input stream

print out each 

edge (once)

14

Digraph API

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++) 
   for (int w : G.adj(v))
      StdOut.println(v + "->" + w);

% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4
⋮

11->4
11->12
12-9

read digraph from 

input stream

print out each 

edge (once)
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Maintain vertex-indexed array of lists.
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Adjacency-lists digraph representation

adj[]
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V

E

Do you slumber?

Suppose we are given an arbitrary Digraph G and a path of length V given 

by int[] P.

16

Q: What is the worst case run time to check validity of a path P for a 

general graph with E edges and V vertices?
A. E     [41138]                      C. EV        [41146]
B. V     [41142]                      D. E+V       [41182]

pollEv.com/jhug              text to 37607
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Do you slumber?

Suppose we are given an arbitrary Digraph G and a path of length V given 

by int[] P.

17

Q: What is the worst case run time to check validity of a path P for a 

general graph with V vertices?
A. 1                               C. V2       
B. V                           

pollEv.com/jhug              text to 37607
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Adjacency-lists graph representation (review):  Java implementation

public class Graph
{
   private final int V;
   private final Bag<Integer>[] adj;

   public Graph(int V)
   {
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Integer>();
   }

   public void addEdge(int v, int w)
   {
      adj[v].add(w);  
      adj[w].add(v);  
   }

   public Iterable<Integer> adj(int v)
   {  return adj[v];  }
}

adjacency lists

create empty graph

with V vertices

iterator for vertices 

adjacent to v

add edge v–w

19

Adjacency-lists digraph representation:  Java implementation

public class Digraph
{
   private final int V;
   private final Bag<Integer>[] adj;

   public Digraph(int V)
   {
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
         adj[v] = new Bag<Integer>();
   }

   public void addEdge(int v, int w)
   {
      adj[v].add(w);  

   }

   public Iterable<Integer> adj(int v)
   {  return adj[v];  }
}

adjacency lists

create empty digraph

with V vertices

add edge v→w

iterator for vertices 

pointing from v

In practice.  Use adjacency-lists representation.

・Algorithms based on iterating over vertices pointing from v.

・Real-world digraphs tend to be sparse.

20

Digraph representations

representation space
insert edge

from v to w

edge from

v to w?

iterate over vertices 

pointing from v?

list of edges E 1 E E

adjacency matrix V2    1† 1 V

adjacency lists E + V 1 outdegree(v) outdegree(v)

huge number of vertices,

small average vertex degree

† disallows parallel edges
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Reachability

Problem.  Find all vertices reachable from s along a directed path.

s

Same method as for undirected graphs.

・Every undirected graph is a digraph (with edges in both directions).

・DFS is a digraph algorithm.

Difficulty level.

・Exactly the same problem for computers.

・Harder for humans than undirected graphs.

– Edge interpretation is context dependent!

23

Depth-first search in digraphs

Mark v as visited.
Recursively visit all unmarked

          vertices w pointing from v.

DFS (to visit a vertex v)

The man-machine

24

Difficulty level.

・Exactly the same problem for computers.

・Harder for humans than undirected graphs.

– Edge interpretation is context dependent!



To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.
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10

Depth-first search demo
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a directed graph

4→2

2→3

3→2

6→0

0→1 

2→0
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To visit a vertex v :

・Mark vertex v as visited.

・Recursively visit all unmarked vertices pointing from v.

T

T 
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Depth-first search demo
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reachable from 0

reachable

from vertex 0
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4

Recall code for undirected graphs.

public class DepthFirstSearch
{
   private boolean[] marked;

   public DepthFirstSearch(Graph G, int s)
   {
      marked = new boolean[G.V()];
      dfs(G, s);
   }

   private void dfs(Graph G, int v)
   {
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
   }

   public boolean visited(int v)
   {  return marked[v];  }
}

27

Depth-first search (in undirected graphs)

true if connected to s

constructor marks 

vertices connected to s

recursive DFS does the work

client can ask whether any 

vertex is connected to s

Code for directed graphs identical to undirected one.

[substitute Digraph for Graph]

public class DirectedDFS
{
   private boolean[] marked;

   public DirectedDFS(Digraph G, int s)
   {
      marked = new boolean[G.V()];
      dfs(G, s);
   }

   private void dfs(Digraph G, int v)
   {
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
   }

   public boolean visited(int v)
   {  return marked[v];  }
}

28

Depth-first search (in directed graphs)

true if path from s

constructor marks 

vertices reachable from s

recursive DFS does the work

client can ask whether any 

vertex is reachable from s
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Reachability application:  program control-flow analysis

Every program is a digraph.

・Vertex = basic block of instructions (straight-line program).

・Edge = jump.

Dead-code elimination. 

Find (and remove) unreachable code.

・Cow.java:5: unreachable statement

Infinite-loop detection.

Determine whether exit is unreachable.

・Trivial?

・Doable by student?

・Doable by expert?

・Intractable?

・Unknown?

・Impossible?

Every data structure is a digraph.

・Vertex = object.

・Edge = reference.

Roots.  Objects known to be directly accessible by program (e.g., stack).

Reachable objects.  Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

30

Reachability application:  mark-sweep garbage collector

ro
o
ts

31

Reachability application:  mark-sweep garbage collector

Mark-sweep algorithm.  [McCarthy, 1960]

・Mark:  mark all reachable objects.

・Sweep:  if object is unmarked, it is garbage (so add to free list).

Memory cost.  Uses 1 extra mark bit per object (plus DFS stack).

ro
o
ts

DFS enables direct solution of simple digraph problems.

・Reachability.

・Path finding.

・Topological sort.

・Directed cycle detection.          

Basis for solving difficult digraph problems.

・2-satisfiability.

・Directed Euler path.

・Strongly-connected components.

32

Depth-first search in digraphs summary

✓

SIAM J. COMPUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.
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Same method as for undirected graphs.

・Every undirected graph is a digraph (with edges in both directions).

・BFS is a digraph algorithm.

Proposition.  BFS computes shortest paths (fewest number of edges)

from s to all other vertices in a digraph in time proportional to E + V.

33

Breadth-first search in digraphs

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

  -  remove the least recently added vertex v

  -  for each unmarked vertex pointing from v:

     add to queue and mark as visited.

BFS (from source vertex s)

Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

34

graph G
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Repeat until queue is empty:

・Remove vertex v from queue.

・Add to queue all unmarked vertices pointing from v and mark them.

Directed breadth-first search demo

35

done
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4

Multiple-source shortest paths.  Given a digraph and a set of source 

vertices, find shortest path from any vertex in the set to each other vertex.

Ex.  S = { 1, 7, 10 }.

・Shortest path to 4 is 7→6→4.

・Shortest path to 5 is 7→6→0→5.

・Shortest path to 12 is 10→12.

・…

Q.  How to implement multi-source shortest paths algorithm?

A.  Use BFS, but initialize by enqueuing all source vertices.

36

Multiple-source shortest paths
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Breadth-first search in digraphs application:  web crawler

Goal.  Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]

・Choose root web page as source s.

・Maintain a Queue of websites to explore.

・Maintain a SET of discovered websites.

・Dequeue the next website and enqueue

websites to which it links

(provided you haven't done so before).

Q.  Why not use DFS?

18

31
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1 14
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46

5

24

37
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36

4

3 17

27

20

34

15

2

19 33
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8

How many strong components are there in this digraph? 38

Bare-bones web crawler:  Java implementation

 Queue<String> queue = new Queue<String>();
 SET<String> marked = new SET<String>();

 String root = "http://www.princeton.edu";
 queue.enqueue(root);
 marked.add(root);

 while (!queue.isEmpty())
 {
    String v = queue.dequeue();
    StdOut.println(v);
    In in = new In(v);
    String input = in.readAll();

    String regexp = "http://(\\w+\\.)+(\\w+)";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find())
    {
       String w = matcher.group();
       if (!marked.contains(w))
       {
          marked.add(w);
          queue.enqueue(w);
       }
    }
 }

read in raw html from next

website in queue

use regular expression to find all URLs

in website of form http://xxx.yyy.zzz

[crude pattern misses relative URLs]

if unmarked, mark it and put

on the queue

start crawling from root website

queue of websites to crawl
set of marked websites

BFS Webcrawler Output

http://www.princeton.edu

http://www.w3.org

http://ogp.me

http://giving.princeton.edu

http://www.princetonartmuseum.org

http://www.goprincetontigers.com

http://library.princeton.edu

http://helpdesk.princeton.edu

http://tigernet.princeton.edu

http://alumni.princeton.edu

http://gradschool.princeton.edu

http://vimeo.com

http://princetonusg.com

http://artmuseum.princeton.edu

http://jobs.princeton.edu

39

http://odoc.princeton.edu

http://blogs.princeton.edu

http://www.facebook.com

http://twitter.com

http://www.youtube.com

http://deimos.apple.com

http://qeprize.org

http://en.wikipedia.org

...

DFS Webcrawler Output

http://www.princeton.edu

http://deimos.apple.com [dead end]

http://www.youtube.com

http://www.google.com

http://news.google.com

http://csi.gstatic.com

http://googlenewsblog.blogspot.com

http://labs.google.com

http://groups.google.com

http://img1.blogblog.com

http://feeds.feedburner.com

http://buttons.googlesyndication.com

http://fusion.google.com

http://insidesearch.blogspot.com

http://agoogleaday.com

40

http://static.googleusercontent.com

http://searchresearch1.blogspot.com

http://feedburner.google.com

http://www.dot.ca.gov

http://www.getacross80.com

http://www.TahoeRoads.com

http://www.LakeTahoeTransit.com

http://www.laketahoe.com

http://ethel.tahoeguide.com

...
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Algorithms

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components

4.2  DIRECTED GRAPHS

Goal.  Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model.  vertex = task; edge = precedence constraint.

42

Precedence scheduling

tasks

precedence constraint graph

0

1

4

52

6

3

feasible schedule

0.  Algorithms

1.  Complexity Theory

2.  Artificial Intelligence

3.  Intro to CS

4.  Cryptography

5.  Scientific Computing

6.  Advanced Programming
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Topological sort

DAG.  Directed acyclic graph.

Topological sort.  Redraw DAG so all edges point upwards.

Solution.  DFS. What else?

directed edges

  0→5   0→2

  0→1   3→6

  3→5   3→4

  5→4   6→4

  6→0   3→2

  1→4

DAG

0

1

4

52

6

3

topological order

・Run depth-first search.

・Return vertices in reverse postorder.

0

1

4

52

6

3

Topological sort demo
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a directed acyclic graph

0→5

0→2

0→1

3→6

3→5 

3→4

5→4

6→4

6→0

3→2

1→4

1

4

52

6

3

0



・Run depth-first search.

・Return vertices in reverse postorder.

・Why does it work?

– Last item in postorder has indegree 0. Good starting point.

– Second to last can only be pointed to by last item. Good follow-up.

– ...

Topological sort intuitive proof 
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4   1   2   5   0   6   3

postorder

0

1

4

52

6

3

0

1

4

52

6

3

3   6   0   5   2   1   4

topological order

See book / online slides for foolproof full proof.

Topological sort demo
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4   1   2   5   0   6   3

postorder

0

1

4

52

6

3

0

1

4

52

6

3

3   6   0   5   2   1   4

topological order

topological order

Q: Is the reverse postorder the only valid topological order for this graph? 

A. No        [452392]                  
B. Yes       [452393]

pollEv.com/jhug              text to 37607

Topological sort demo
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4   1   2   5   0   6   3

postorder

0

1

4

52

6

3

0

1

4

52

6

3

3   6   0   5   2   1   4

topological order

topological order

Q: Is the reverse postorder the only valid topological order for this graph? 

A. No        [452392]                  

Example: Could move 1 down one step. 0 → 1 still points up.

pollEv.com/jhug              text to 37607
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Depth-first search order

public class DepthFirstOrder
{
   private boolean[] marked;
   private Stack<Integer> reversePost;

   public DepthFirstOrder(Digraph G)
   {
      reversePost = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   }

   private void dfs(Digraph G, int v)
   {
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePost.push(v);
   } 
 
   public Iterable<Integer> reversePost()
   {  return reversePost;  }
}

returns all vertices in

“reverse DFS postorder”



Proposition.  A digraph has a topological order iff no directed cycle.

Pf.

・If directed cycle, topological order impossible.

・If no directed cycle, DFS-based algorithm finds a topological order.

Goal.  Given a digraph, find a directed cycle.

Solution.  DFS. What else? See textbook.
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Directed cycle detection

Finding a directed cycle in a digraph

dfs(0)
  dfs(5)
    dfs(4)
      dfs(3)
        check 5

  marked[]        edgeTo[]            onStack[]
0 1 2 3 4 5 ...   0 1 2 3 4 5 ...   0 1 2 3 4 5 ... 

1 0 0 0 0 0       - - - - - 0       1 0 0 0 0 0 
1 0 0 0 0 1       - - - - 5 0       1 0 0 0 0 1 
1 0 0 0 1 1       - - - 4 5 0       1 0 0 0 1 1 
1 0 0 1 1 1       - - - 4 5 0       1 0 0 1 1 1 

a digraph with a directed cycle

50

Directed cycle detection application:  cyclic inheritance

The Java compiler does cycle detection.

public class A extends B
{
   ...
}

public class B extends C
{
   ...
}

public class C extends A
{
   ...
}

% javac A.java
A.java:1: cyclic inheritance 
involving A
public class A extends B { }
       ^
1 error

Microsoft Excel does cycle detection (and has a circular reference toolbar!)
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Directed cycle detection application:  spreadsheet recalculation

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction

‣ digraph API

‣ digraph search

‣ topological sort

‣ strong components

4.2  DIRECTED GRAPHS



Def.  Vertices v and w are strongly connected if there is both a directed path

from v to w and a directed path from w to v. Every node is strongly connected 

to itself.

Key property.  Strong connectivity is an equivalence relation:

・v is strongly connected to v.

・If v is strongly connected to w, then w is strongly connected to v.

・If v is strongly connected to w and w to x, then v is strongly connected to x.

Def.  A strong component is a maximal subset of strongly-connected vertices.

Strongly-connected components

53
A digraph and its strong components

Examples of strongly-connected digraphs: 1 strong component

54

Def.  Vertices v and w are strongly connected if there is both a directed path

from v to w and a directed path from w to v. Every node is strongly connected 

to itself.

Strongly-connected components

55

Q: How many strong components does a DAG on V vertices and E edges have?

A. 0       [452453]             C. E       [452460]
B. 1       [452459]             D. V       [452461]

pollEv.com/jhug              text to 37607

public int connected(int v, int w)
{  return id[v] == id[w];  }

Connected components vs. strongly-connected components

56

     0  1  2  3  4  5  6  7  8  9 10 11 12
id[] 0  0  0  0  0  0  1  1  1  2  2  2  2

v and w are connected if there is

a path between v and w

constant-time client connectivity query

3 connected components

connected component id (easy to compute with DFS)

A digraph and its strong componentsA graph and its connected components

v and w are strongly connected if there is both a directed 

path from v to w and a directed path from w to v

      0  1  2  3  4  5  6  7  8  9 10 11 12
 id[] 1  0  1  1  1  1  3  4  3  2  2  2  2

constant-time client strong-connectivity query

5 strongly-connected components

strongly-connected component id (how to compute?) 

public int stronglyConnected(int v, int w)
{  return id[v] == id[w];  }

A digraph and its strong components



Strongly connected components

Analysis of Yahoo Answers

・Edge is from asker to answerer.

・“A large SCC indicates the presence of a community where many users 

interact, directly or indirectly.”

57

Knowledge sharing and yahoo answers: everyone knows something, Adamic et al (2008)

Strongly connected components

Understanding biological control systems

・Bacillus subtilis spore formation control network.

・SCC constitutes a functional module.

58

Josh Hug: Qualifying exam talk (2008)

Strong components algorithms:  brief history

1960s:  Core OR problem.

・Widely studied; some practical algorithms.

・Complexity not understood.

1972:  linear-time one-pass DFS algorithm (Tarjan).

・Classic algorithm.

・Level of difficulty: Algs4++.

・Demonstrated broad applicability and importance of DFS.

1980s:  easy two-pass linear-time algorithm (Kosaraju-Sharir).

・Forgot notes for lecture; developed algorithm in order to teach it!

・Later found in Russian scientific literature (1972).

1990s:  easier one-pass linear-time algorithms.

・Gabow: fixed old OR algorithm.

・Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

59
A digraph and its strong components

60

Intuitive solution to finding strongly connected components.



Example

   Run DFS(1), get the SCC: {1}.

   Run DFS(0), get {0, 1, 2, 3, 4, 5} - not an SCC.

   Run DFS(1), then DFS(0), get SCC {1} and SCC {0, 2, 3, 4, 5}.

61

Intuitive solution to finding strongly connected components.

62

Intuitive solution to finding strongly connected components.

C

B A

Q: Which DFS call should come next?

A. DFS(7)                                  [397963]
B. DFS(6) or DFS(8)                        [398061]
C. DFS(9), DFS(10), DFS(11), or DFS(12)    [398062]  

pollEv.com/jhug              text to 37607

Example

   Run DFS(1), get the SCC: {1}.

   Run DFS(0), get {0, 1, 2, 3, 4, 5} - not an SCC.

   Run DFS(1), then DFS(0), get SCC {1} and SCC {0, 2, 3, 4, 5}.

63

Intuitive solution to finding strongly connected components.

Punchline. A Magic Sequence of DFS calls yields SCC (MSDFSSCC) 

E

D

C

B A

A digraph and its strong components

DFS.  Calling DFS wantonly is a problem. Never want to leave your SCC.

Starting SCCs. There’s always some set of SCCs with outdegree 0, e.g. {1}. 

Calling DFS on any node in these SCCs finds the SCC.

DFS Order. After calling DFS on all starting SCCs, there’s at least one SCC 

that only points at the starting SCCs.
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Intuitive solution to finding strongly connected components.

digraph G and its strong components Treat SCCs as one big node. Kernel DAG. 
Arrows only connect SCCs. Graph is acyclic.

Kernel DAG in reverse topological order

first vertex is a sink 
(has no edges pointing from it)

E

D

C

B

A



A digraph and its strong components

Kernel DAG.  Topological sort of kernelDAG(G) is A, B, C, D, E.

MSDFSSCC.  Call DFS on element from E, D, C, B, A. Valid MSDFSSCC.                  

For example, DFS(1), DFS(2), DFS(9), DFS(6), DFS(7).

Summary.

・The MSDFSSCC is given by reverse of the topological sort of kernelDAG(G).

65

Kosaraju-Sharir algorithm:  intuitive example

digraph G and its strong components kernel DAG of G. Topological order: A, B, C, D, E.

Kernel DAG in reverse topological order

first vertex is a sink 
(has no edges pointing from it)

E

D

C

B

A

A digraph and its strong components

Kernel DAG.  MSDFSSCC is given by reverse of topological sort of kernelDAG(G).

Reverse Graph Lemma. Reverse of topological sort of kernalDAG(G) is given by 

reverse postorder of GR (see book), where GR  is G with all arrows flipped around.

Punchline.

・MSDFSSCC: The reverse postorder of GR.
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Kosaraju-Sharir algorithm:  intuition (general)

digraph G and its strong components kernel DAG of G (in reverse topological order)

Kernel DAG in reverse topological order

first vertex is a sink 
(has no edges pointing from it)

E

D

C

B

A

???

Phase 1.  Compute reverse postorder in GR.

Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder of GR.

1

4

9

2

5

3

0

1211

10

Kosaraju-Sharir algorithm demo
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digraph G

1

4

9

2

5

3

0

1211

10

8 76 8 76

Phase 1.  Compute reverse postorder in GR.

1

4

9

2

5

3

0

1211

10

1

8 76

Kosaraju-Sharir algorithm demo
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1   0   2   4   5   3   11   9   12   10   6   7   8

reverse digraph GR



Phase 2.  Run DFS in G, visiting unmarked vertices in reverse postorder of GR.

1

4

9

2

5

3

0

1211

10

86 7

Kosaraju-Sharir algorithm demo
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done

0 

1 

2

3

4 

5

6

7

8

9 

10

11

12

1

0 

1

1

1 

1

3

4

3

2 

2

2

2

1   0   2   4   5   3   11   9   12   10   6   7   8

v  id[]
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Kosaraju-Sharir algorithm:  intuition

kernel DAG of G (in reverse topological order)
Kernel DAG in reverse topological order

first vertex is a sink 
(has no edges pointing from it)

AB

C

D

E

1   0   2   4   5   3   11   9   12   10   6   7   8
E D C B A

AB

C

D

E

E

D

C

B

A

Simple (but mysterious) algorithm for computing strong components.

・Phase 1:  run DFS on GR to compute reverse postorder.

・Phase 2:  run DFS on G, considering vertices in order given by first DFS.
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Kosaraju-Sharir algorithm

...

check unmarked vertices in the order 
0 1 2 3 4 5 6 7 8 9 10 11 12

dfs(0)
  dfs(6)
    dfs(8)
      check 6
    8 done
    dfs(7)
    7 done
  6 done
  dfs(2)
    dfs(4)
      dfs(11)
        dfs(9)
          dfs(12)
            check 11
            dfs(10)
              check 9
            10 done
          12 done
          check 7
          check 6
        9 done
      11 done
      check 6
      dfs(5)
        dfs(3)
          check 4
          check 2
        3 done
        check 0
      5 done
    4 done
    check 3
  2 done
0 done
dfs(1)
  check 0
1 done
check 2
check 3
check 4
check 5
check 6
check 7
check 8
check 9
check 10
check 11
check 12

 DFS in reverse digraph GR

reverse postorder for use in second dfs()
1 0 2 4 5 3 11 9 12 10 6 7 8

Simple (but mysterious) algorithm for computing strong components.

・Phase 1:  run DFS on GR to compute reverse postorder.

・Phase 2:  run DFS on G, considering vertices in order given by first DFS.
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Kosaraju-Sharir algorithm

dfs(7)
  check 6
  check 9
7 done
check 8
    

check unmarked vertices in the order 
1 0 2 4 5 3 11 9 12 10 6 7 8

 DFS in original digraph G

dfs(1)
1 done

dfs(0)
  dfs(5)
    dfs(4)
      dfs(3)
        check 5
        dfs(2)
          check 0
          check 3
        2 done
      3 done
      check 2
    4 done
  5 done
  check 1
0 done
check 2
check 4
check 5
check 3

dfs(11)
  check 4
  dfs(12)
    dfs(9)
      check 11
      dfs(10)
        check 12
      10 done
    9 done
  12 done
11 done
check 9
check 12
check 10

dfs(6)
  check 9
  check 4
  dfs(8)
    check 6
  8 done
  check 0
6 done

idarray



Proposition.  Kosaraju-Sharir algorithm computes the strong components of 

a digraph in time proportional to E + V.

Pf.

・Running time:  bottleneck is running DFS twice (and computing GR).

・Correctness:  tricky, see textbook (2nd printing).

・Implementation:  easy!
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Kosaraju-Sharir algorithm
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Connected components in an undirected graph (with DFS)

public class CC
{
   private boolean marked[];
   private int[] id;
   private int count;

   public CC(Graph G)
   {
      marked = new boolean[G.V()];
      id = new int[G.V()];

      for (int v = 0; v < G.V(); v++)
      {
         if (!marked[v])
         {
            dfs(G, v);
            count++;
         }
      }
   }

   private void dfs(Graph G, int v)
   {
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }

   public boolean connected(int v, int w)
   {  return id[v] == id[w];  }
}
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Strong components in a digraph (with two DFSs)

public class KosarajuSharirSCC
{
   private boolean marked[];
   private int[] id;
   private int count;

   public KosarajuSharirSCC(Digraph G)
   {
      marked = new boolean[G.V()];
      id = new int[G.V()];
      DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
      for (int v : dfs.reversePost())
      {
         if (!marked[v])
         {
            dfs(G, v);
            count++;
         }
      }
   }

   private void dfs(Digraph G, int v)
   {
      marked[v] = true;
      id[v] = count;
      for (int w : G.adj(v))
         if (!marked[w])
            dfs(G, w);
   }

   public boolean stronglyConnected(int v, int w)
   {  return id[v] == id[w];  }
}

Digraph-processing summary:  algorithms of the day

76

single-source 

reachability

in a digraph

DFS

topological sort

in a DAG
DFS

strong

components

in a digraph

Kosaraju-Sharir

DFS (twice)

0
6

4

21

5

3

7

12

109

11

8


