
Princeton University
COS 217: Introduction to Programming Systems

Spring 2013 Final Exam Preparation

The exam is closed-book, closed-notes, closed-handouts. No laptops, calculators, or other electronic
devices are permitted.

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings.
This is a non-exhaustive list of topics that were covered. Topics that were covered after the midterm exam
are in boldface.

1. Number Systems

• The binary, octal, and hexadecimal number systems
• Finite representation of integers
• Representation of negative integers
• Binary arithmetic
• Bitwise operators

2. C Programming

• The program preparation process: preprocess, compile, assemble, link
• Program structure: multi-file programs using header files
• Process memory layout: text, stack, heap, rodata, data, bss sections
• Data types
• Variable declarations and definitions
• Variable scope, linkage, and duration/extent
• Constants: #define, constant variables, enumerations
• Operators and statements
• Function declarations and definitions
• Pointers; call-by-reference
• Arrays: arrays and pointers, arrays as parameters, strings
• Command-line arguments
• Input/output functions for standard streams and files, and for text and binary data
• Structures
• Dynamic memory mgmt.: malloc(), calloc(), realloc(), free()
• Dynamic memory mgmt. errors: dangling pointer, memory leak, double free
• Abstract data types; opaque pointers
• Void pointers
• Function pointers and function callbacks
• Parameterized macros and their dangers (see King Section 14.3)

3. Programming-in-the-Large

• Testing
• External testing taxonomy: boundary condition, statement, path, stress
• Internal testing techniques: testing invariants, verifying conservation properties,

checking function return values, changing code temporarily, leaving testing code intact

Page 1 of 4

• General testing strategies: testing incrementally, comparing implementations,
automation, bug-driven testing, fault injection

• Debugging heuristics
• Understand error messages, think before writing, look for familiar bugs, divide and

conquer, add more internal tests, display output, use a debugger, focus on recent changes
• Heuristics for debugging dynamic memory management: look for familiar bugs, make the

seg fault happen in a debugger, manually inspect each call of malloc() and free(),
temporarily hard-code malloc() to request a large number of bytes, temporarily comment-
out each call of free(), use Meminfo

• Program and programming style
• Top-down design

• Data structures and algorithms
• Linked lists, hash tables, memory ownership

• Module qualities:
• Separates interface and implementation, encapsulates data, manages resources

consistently, is consistent, has a minimal interface, reports errors to clients, establishes
contracts, has strong cohesion, has weak coupling

• Generics
• Generic data structures via void pointers
• Generic algorithms via function pointers

• Building
• Automated builds, dependencies, partial builds

• Performance improvement
• When to improve performance
• Techniques for improving execution (time) efficiency
• Techniques for improving memory (space) efficiency

• Performance improvement revisited
• Optimize only when and where necessary
• Improve asymptotic behavior

• Use better data structures or algorithms
• Improve execution time/space constants

• Coax the compiler to perform optimizations
• Exploit capabilities of the hardware
• Capitalize on knowledge of program execution

4. Under the Hood: Toward the Hardware

• Computer architectures and the IA-32 computer architecture
• Computer organization
• RISC vs CISC
• Control unit vs. ALU vs. memory
• Little-endian vs. big-endian byte order
• Language levels: high-level vs. assembly vs. machine

• Assembly languages and the IA-32 assembly language
• Directives (.section, .asciz, .long, etc.)
• Mnemonics (movl, addl, call, etc.)
• Control transfer: condition codes and jump instructions
• Instruction operands: immediate, register, memory
• Memory operands: direct, indirect, base+displacement, indexed, scaled-indexed
• The stack and local variables
• The stack and function calls: the IA-32 function calling convention

• Machine language
• Opcodes
• The ModR/M byte

Page 2 of 4

• The SIB byte
• Immediate, register, memory, displacement operands

• Assemblers
• The forward reference problem
• Pass 1: Create symbol table
• Pass 2: Use symbol table to generate data section, rodata section, bss section, text

section, relocation records
• Linkers

• Resolution: Fetch library code
• Relocation: Use relocation records and symbol table to patch code

5. Under the Hood: Toward the Operating System

• Exceptions and Processes
• Exceptions: interrupts, traps, faults, and aborts
• Traps in Intel processors
• System-level functions (alias "system calls")
• The process abstraction
• The illusion of private control flow

• Reality: context switches
• The illusion of private address space

• Reality: virtual memory
• Memory Management

• The memory hierarchy: registers vs. cache vs. memory vs. local secondary storage
vs. remote secondary storage

• Locality of reference and caching
• Virtual memory
• Implementation of virtual memory

• Page tables, page faults
• Dynamic memory management

• Memory allocation strategies
• Free block management
• Optimizing malloc() and free()

• I/O Management
• The stream abstraction
• Implementation of standard C I/O functions using Unix system-level functions

• The open(), creat(), close(), read(), and write() functions
• Process management

• Creating and destroying processes
• The getpid(), execvp(), fork(), and wait() functions
• The exit() and system() functions

• Redirection of stdin, stdout, and stderr
• The dup() and dup2() functions

• Signals and alarms
• Sending signals via keystrokes, the kill command, and the raise() and kill() functions
• Handling signals: the signal() function
• The SIG_IGN and SIG_DFL parameters to signal()
• Blocking signals: the sigprocmask() function
• Alarms: the alarm() function

6. Legal and Financial Aspects of Computing

• Legal aspects

Page 3 of 4

• Copyrights, patents, trade secrets, derivative works, licenses
• Open source vs. free software
• Using licensed components

• Financial aspects
• How to make money: consult, work for large company, start a business, work for a

startup, other
• Common issues: salary, profits & revenues, stock & stock options, ownership

7. Applications

• De-commenting
• Lexical analysis via finite state automata
• String manipulation
• Symbol tables, linked lists, hash tables
• Dynamically expanding arrays
• High-precision addition
• Buffer overrun attacks
• Heap management
• Unix shells

8. Tools: The Unix/GNU programming environment

• Unix, Bash, Emacs, GCC, GDB for C, Make, Gprof, GDB for assembly language

Readings

As specified by the course "Schedule" Web page. Readings that were assigned after the midterm exam are
in boldface.

Required:

• C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1, 22
• Computer Systems (Bryant & O'Hallaron): 1, 3 (OK to skip 3.13 and 3.14), 8.1-8.5, 9

• Communications of the ACM "Detection and Prevention of Stack Buffer Overflow Attacks"

• The C Programming Language (Kernighan & Ritchie) 8.7

Recommended:

• Unix Tutorial for Beginners
• GNU Emacs Tutorial
• GNU GDB Tutorial
• GNU Make Tutorial
• GNU Gprof Tutorial
• Computer Systems (Bryant & O'Hallaron): 2, 5.1-5.6, 6, 7, 10
• The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8
• Programming with GNU Software (Loukides & Oram): 1, 2, 3, 4, 6, 7, 8, 9

Copyright © 2013 by Robert M. Dondero, Jr.

Page 4 of 4

