
COS 126 General Computer Science Spring 2013

Programming Practice Exam 2

This practice test has 2 programming parts. You have 90 minutes. The exam is open book, open
note, and open booksite. You may use code from your programming assignments or the Introduction
to Programming in Java booksite. No communication with any non-staff members is permitted. If
this were a real exam, you would have to write out and sign the Honor Code pledge
before turning in the test, so you should do so to practice taking this time into account.
Write out and sign the Honor Code pledge before turning in the test:
“I pledge my honor that I have not violated the Honor Code during this examination.”

___________________________________

Signature

Problem Score
Problem Score

0 /1
1 /19
2 /10

Total

Name:

NetID:

Precept:
(circle your
precept)

P01 12:30 Dave Pritchard
P01A 12:30 Donna Gabai
P01B 12:30 Pawel Przytycki
P02 1:30 Tom Funkhouser
P02A 1:30 Allison Chaney
P02B 1:30 Pawel Przytycki
P02C 1:30 Vivek Pai
P02D 1:30 Siddhartha Chaudhuri
P03 2:30 Tom Funkhouser
P03A 2:30 Allison Chaney
P04 3:30 Vivek Pai
P04B 3:30 Shilpa Nadimpalli
P05 7:30 Shilpa Nadimpalli
P06 10am Lennart Beringer
P07 1:30 Dave Pritchard
P07A 1:30 Kevin Lee
P07B 1:30 Siyu Liu
P08 12:30 Donna Gabai
P08A 12:30 Judi Israel
P09 11am Judi Israel

1



0. Cover Page Write your name and netid, select your lecture and precept sections, and write
out the honor code on the cover (now!) and sign it when you complete the test.

1. Map of Points

Your first task is to write a Java class, PUPoints, whose main method plots a set of points onto
StdDraw.

Your drawing window must have a scale from 0 to 1 in both the X and Y directions. The
program must take one command line argument, which is an image file that must be displayed
as the background using this command: StdDraw.picture(.5,.5,args[0],1,1);

You must read in pairs of latitude and longitude coordinates from standard input. There is no
specified limit to the number of pairs in the set, but you are guaranteed that they will be pairs
(that is, input will not end with a latitude coordinate).

For each pair, you must convert each coordinate from degrees into map coordinates (between
0 and 1) so that you can plot them. To convert from degrees into map coordinates, use this
equation:

mapCoord = degree−degreemin

degreemax−degreemin

The minima and maxima apply to the map provided. The minimum and maximum X (longitude)
are -74.66443◦ and -74.64564◦, respectively. The minimum and maximum Y (latitude) are
40.33855◦ and 40.35281◦, respectively.

Once you have completed the conversion for a pair, you must print that pair’s map coordinates
to standard output in the format shown in the examples (one latitude and longitude pair per
line, separated by a space). You must also draw the point to the standard drawing interface as
a black unfilled circle of radius .01.

2



Sample Run. Here is our input, output, and resulting drawing for three sample runs, the last
of which is shown abbreviated. The full third dataset – real-world data courtesy of Leonardo
Stedile ’14, Spencer Tank ’14, and Tiantian Zha ’13 – is available on the Precepts page.

% more fivepoints.txt

40.35000 -74.65200

40.34800 -74.65710

40.34863 -74.65840

40.34875 -74.65931

40.34116 -74.64983

% java PUPoints map.png < fivepoints.txt

0.8029453015430142 0.6615220862159509

0.6626928471248922 0.39010111761563393

0.7068723702666181 0.320915380521391

0.7152875175318748 0.27248536455519407

0.18302945301572163 0.7770090473658801

3



% more canon.txt

40.34863 -74.65840

40.34851 -74.65872

40.34842 -74.65896

40.34839 -74.65904

40.34832 -74.65910

40.34833 -74.65911

40.34833 -74.65912

40.34832 -74.65912

40.34832 -74.65912

40.34796 -74.65890

40.34752 -74.65880

% java PUPoints map.png < canon.txt

0.7068723702666181 0.320915380521391

0.6984572230013613 0.3038850452365496

0.6921458625525433 0.29111229377348574

0.6900420757366028 0.28685470995170814

0.6851332398319113 0.28366152208632034

0.6858345021037253 0.2831293241085036

0.6858345021037253 0.2825971261306869

0.6851332398319113 0.2825971261306869

0.6851332398319113 0.2825971261306869

0.6598877980366393 0.29430548163887355

0.6290322580648617 0.2996274614155283

4



% more stz.txt

40.34448 -74.65511

40.34448 -74.65511

40.34448 -74.65511

40.34455 -74.65504

40.34460 -74.65504

...

40.34359 -74.65794

40.34362 -74.65793

40.35022 -74.65109

40.34721 -74.65408

40.34747 -74.65418

% java PUPoints map.png < stz.txt

0.41584852734917654 0.49600851516788713

0.41584852734917654 0.49600851516788713

0.41584852734917654 0.49600851516788713

0.42075736325386814 0.49973390101109166

0.4242636746144333 0.49973390101109166

...

0.35343618513330904 0.34539648749339785

0.3555399719497478 0.3459286854712146

0.818373071528903 0.7099521021821478

0.6072931276296567 0.5508249068656159

0.6255259467042965 0.5455029270889612

5



2. Heat Map Your second task is to write a Java class, PUHeatMap, whose main method plots the
points in a more advanced manner – creating a heatmap with a custom resolution.

In addition to the image file, which unlike in the previous program is now the 2nd command
line argument, this program takes another command line argument: N . Your drawing window
must have a scale from 0 to N in both the X and Y directions.

The input format is identical, as is the conversion to map coordinates, and the same pairing
guarantee is still applicable. For this program, however, you must read all points and record
their locations scaled onto an N × N grid. For example, the map coordinate (.1, .2) should be
tallied as being in grid cell [floor(.1 ∗N)][floor(.2 ∗N)]. (floor just means use the integer part
of the product and ignore the fractional part.)

Once you have read in all pairs of coordinates, you must scan through all grid cells and draw
a point for each non-empty one to the standard drawing interface at its cell location (i.e. you
must check N2 cells, and if, e.g. cell [15][12] is not zero, draw a point at (15, 12)). The point
should be drawn as a filled circle of radius .01 ∗ N , with a color corresponding to the value of
the cell:

< .1% of total points => StdDraw.BLUE

< .3% of total points => StdDraw.YELLOW

< .5% of total points => StdDraw.ORANGE

< .7% of total points => StdDraw.PINK

< .9% of total points => StdDraw.MAGENTA

>=.9% of total points => StdDraw.RED

Additionally, your program should print the total number of points and total number of non-
empty cells, which corresponds to total coverage of the map, to standard output in the format
shown in the sample runs.

Sample Run. Here is our output and drawing for the same three sample files, using several
values of N :

% java PUHeatMap 10 map.png < fivepoints.txt

Total points: 5

Filled cells: 5

6



% java PUHeatMap 1000 map.png < fivepoints.txt

Total points: 5

Filled cells: 5

% java PUHeatMap 10 map.png < canon.txt

Total points: 11

Filled cells: 3

7



% java PUHeatMap 100 map.png < canon.txt

Total points: 11

Filled cells: 7

% java PUHeatMap 2000 map.png < canon.txt

Total points: 11

Filled cells: 10

8



% java PUHeatMap 25 map.png < stz.txt

Total points: 1492

Filled cells: 71

% java PUHeatMap 50 map.png < stz.txt

Total points: 1492

Filled cells: 110

9



% java PUHeatMap 100 map.png < stz.txt

Total points: 1492

Filled cells: 154

10


