
COS 126 General Computer Science Fall 2012

Practice Programming Exam 4

This test has 1 question with 3 parts. You have 90 minutes. The exam is open book, open note, and open
course website and booksite. You may use code from your programming assignments or the Introduction to
Programming in Java booksite. No communication with any non-staff members is permitted. IF this were
an actual exam, you would be directed to submit your solution via Dropbox. Write out and sign the
Honor Code pledge before turning in the test.

”I pledge my honor that I have not violated the Honor Code during this examination.”

_______________________________
Signature

Name:

NetID:

Precept:

Do not remove this exam from the exam room.

1



Problem. Your task is to create a calendar that can track events on a per-day basis. Client programs need
to be able to schedule events and detect conflicts between events. Test main() methods are provided for
each class.

Part 1 (12 points). First, write a class Event that implements the following API:

API Specification

public class Event
----------------------------------------------------------------------------------------------

Event(int start, int end, String info) // construct an Event using the arguments
int getStart() // return start time of event
int getEnd() // return end time of event

String getInfo() // return information about event
boolean conflict(Event that) // Does this Event conflict with that Event?
String toString() // return String representation of Event
void main() // test main

The constructor should simply save the argument values in instance variables. The start and end times are
based on a 24 hour clock. It is not necessary to write leading zeroes. Do not worry about checking for illegal
times. (i.e., hours over 23 or minutes over 59)

The accessor methods getStart(), getEnd() and getInfo() should each return the appropriate instance
variable.

The conflict() method should return true if the argument Event conflicts with this Event. Two events
conflict if their times overlap. (It is OK if the start time of the later one is equal to the end time of the
earlier one. That is not a conflict.)

The toString() method should return a String consisting of start time and end time separated by a dash,
followed by a colon, a space and the information about the event. (e.g., 1000-1050: COS126 lecture)

Part 2 (12 points). Your next task is to implement a Day class. A Day is a linked list of Event objects
linked according to start times, from earliest to latest. If events have the same start time, it does not matter
which comes first, but they should be next to each other.

You will need a private inner Node class defined as follows:

private class Node {
private Event ev;
private Node next;

}

API Specification

public class Day
--------------------------------------------------------------------------------------------------

Day() // construct an empty Day
void addEvent(Event ev) // add Event ev to this Day

// insert it in the linked list in start time order
void show() // output the Events of this Day, one event per line

// output a warning about conflicts between adjacent events
// as they are printed.

void main() // test main

2



Part 3 (6 points). Your final task is to implement a Calendar class. The Calendar class should store a
symbol table that uses an 8-digit integer date (yyyymmdd) as the key and a Day object as the value.

Your Calendar should be a sparse calendar. That is, you should only add an entry to your symbol table if
there is at least one Event on that particular date.

API Specification

public class Calendar
--------------------------------------------------------------------------------------------------

Calendar() // construct an empty Calendar instance
// by initializing its symbol table

void schedule(int date, Event ev) // schedule an Event on a particular date
void show() // output the Calendar
void main() // test main

The schedule method should use the addEvent() method for the correct Day object. If there is no Day
instance for that date, then schedule() should construct one and add it to the symbol table.

Testing and Sample Runs. Below is a test main() for Event. You may copy it from the precepts page.

// test main for Event
public static void main(String[] args) {

// set up some events
Event ev0 = new Event(900, 1000, "Breakfast");
Event ev1 = new Event(1000, 1050, "COS126 lecture");
Event ev2 = new Event(1230, 1320, "COS126 precept");
Event ev3 = new Event(1200, 1300, "lunch with Bob");

StdOut.println(ev0);
StdOut.println(ev1);
StdOut.println("Does " + ev0.getInfo() + " conflict with "

+ ev1.getInfo() + "?");
if (ev0.conflict(ev1)) StdOut.println("Yes.");
else StdOut.println("No.");
StdOut.println("Does " + ev2.getInfo() + " conflict with "

+ ev3.getInfo() + "?");
if (ev2.conflict(ev3)) StdOut.println("Yes.");
else StdOut.println("No.");

}

Here is our output for the Event test main() given above:

> java Event
900-1000: Breakfast
1000-1050: COS126 lecture
Does Breakfast conflict with COS126 lecture?
No.
Does COS126 precept conflict with lunch with Bob?
Yes.

3



Here is a test main() for Day. You may copy it from the precepts page.

// test main for Day
public static void main(String[] args) {

// set up some events
Event ev1 = new Event(1000, 1050, "COS126 lecture");
Event ev2 = new Event(1230, 1320, "COS126 precept");
Event ev3 = new Event(1200, 1300, "lunch with Bob");

// Add to the same day
Day tues = new Day();
tues.addEvent(ev1);
tues.addEvent(ev2);
tues.addEvent(ev3);

// Output the events for the Day
tues.show();

}

Here is our output for the Day test main() given above:

> java Day
1000-1050: COS126 lecture
1200-1300: lunch with Bob
Warning: 1200-1300: lunch with Bob conflicts with 1230-1320: COS126 precept
1230-1320: COS126 precept

Here is a test main() for Calendar. You may copy it from the precepts page.

// test main for Calendar
public static void main(String[] args) {

// set up some events
Event ev1 = new Event(1000, 1050, "COS126 exam");
Event ev2 = new Event(1930, 2100, "COS126 programming exam");
Event ev3 = new Event(1200, 1300, "lunch with Bob");
Event ev4 = new Event(1000, 1050, "COS126 lecture");
Event ev5 = new Event(1230, 1320, "COS126 precept");

// set up some dates
int d1 = 20120501;
int d2 = 20120503;

Calendar c = new Calendar();
c.schedule(d1, ev2);
c.schedule(d1, ev1);
c.schedule(d2, ev3);
c.schedule(d2, ev4);
c.schedule(d2, ev5);

// Output the events for each date
c.show();

}

4



Here is our output for the Calendar test main():

> java Calendar
20120501
1000-1050: COS126 exam
1930-2100: COS126 programming exam

20120503
1000-1050: COS126 lecture
1200-1300: lunch with Bob
Warning: 1200-1300: lunch with Bob conflicts with 1230-1320: COS126 precept
1230-1320: COS126 precept

Your programs should work for other clients as well.

Submission. If this were an actual programming exam, you would be directed to submit the three files
Event.java, Day.java and Calendar.java via Dropbox and reminded to click the Check all submitted files
button to verify your submission.

Grading. If this were an actual exam, your program would be graded on correctness and clarity. You would
receive partial credit for correctly implementing the following components:

• Header with name, login, precept

• Constructor and each method for Event class.

• Constructor and each method for Day class.

• Constructor and each method for Calendar class.

You will receive a substantial penalty if your program does not compile or if you do not follow the prescribed
API or output specification.

5


