COS126 Array Activity - Section 1.4

Complete the program so it can take an unspecified number of command-line inputs, store them in an integer array, and compute their sum. The program will then output a random index calculated using the inputs as frequency counts. (Web Exercise 1.4.2)

```
2
     Login, etc:
 3
     Compile: javac DiscreteDistribution.java
4
     Execute: java DiscreteDistribution freq0 freq1 freq2 . . .
 5
 6
   * Reads in an array of N frequency counts from the command line,
7
     and prints out i with probability proportional to the ith
8
     frequency count.
 9
   * // six equally likely events
10
   * % java DiscreteDistribution 1 1 1 1 1 1
11
12
13
14
   * % java DiscreteDistribution 1 1 1 1 1 1
15
16
17
   * // six events, one 3x more likely than the others
   * % java DiscreteDistribution 1 1 1 1 1 3
18
19
20
21
  * % java DiscreteDistribution 1 1 1 1 1 3
22
23
24
   * % java DiscreteDistribution 1 1 1 1 1 3
25
26
   27
28 public class DiscreteDistribution {
29
     public static void main(String[] args) {
30
        // read in N frequencies. store in integer array.
31
        int N = ____;
32
        _____[] freq = ____ int[__];
33
34
        for (_____; _____; ______) {
35
           freq[____] = Integer.parseInt(_____);
36
        }
37
38
        // compute total count of all frequencies
39
        int total = ____;
        for (int i = 0; i < N; i++) {
40
41
           total += ____;
42
        }
43
44
        // generate random integer with probability proportional to frequency
```

```
int r = (int) (total * Math.random()); // integer in [0, total)
45
          int sum = 0;
46
47
         int event = -1;
         for (int i = 0; i < N && sum <= r; i++) {
48
49
              sum += freq[i];
50
              event = i;
51
         }
52
         System.out.println(event);
53
54
      }
55 }
```