9. Scientific Computing
Applications of Scientific Computing

Science and engineering challenges.
• Fluid dynamics.
• Seismic surveys.
• Plasma dynamics.
• Ocean circulation.
• Electronics design.
• Pharmaceutical design.
• Human genome project.
• Vehicle crash simulation.
• Global climate simulation.
• Nuclear weapons simulation.
• Molecular dynamics simulation.

Commercial applications.
• Web search.
• Financial modeling.
• Computer graphics.
• Digital audio and video.
• Natural language processing.
• Architecture walk-throughs.
• Medical diagnostics (MRI, CAT).

Common features.
• Problems tend to be continuous instead of discrete.
• Algorithms often need to scale to handle huge problems.
Representing Real Numbers

Challenge: use fixed size words to represent, e.g.,
- 2.1
- 0.0000000000000000000000000000000000345878778
- -1020455.000322
- 3650908070000000000000000000000000.0

We appear to need:
- A sign bit
- An exponent, which might need to be negative
- A “significand” or “mantissa”
- AND a way to cram all this into 32 or 64 bits.
Floating Point

IEEE 754 representation.
- Used by all modern computers.
- Scientific notation, but in binary.
- Single precision: `float` = 32 bits.
- Double precision: `double` = 64 bits.

Ex. Single precision representation of `-0.453125`.

```
1 0 1 1 1 1 0 1
-1  125
```

Exponent: `11 0 1 0 0 0 0 0`

Significand: `0 0 0 0 0 0 0 0`

Bias: `-127`

Hidden bit: `0`

$$-1 \times 2^{125 - 127} \times 1.8125 = -0.453125$$
Floating Point

Remark. Most real numbers are not representable, including π and 1/10.

Roundoff error. When result of calculation is not representable.
Consequence. Non-intuitive behavior for uninitiated.

Financial computing. Calculate 9% sales tax on a 50¢ phone call.
Banker's rounding. Round to nearest integer, to even integer if tie.

```java
if (0.1 + 0.2 == 0.3) { // NO }
if (0.1 + 0.3 == 0.4) { // YES }
```

double a1 = 1.14 * 75; // 85.49999999999999
double a2 = Math.round(a1); // 85

double b1 = 1.09 * 50; // 54.50000000000001
double b2 = Math.round(b1); // 55
```

SEC violation (1¢)
```
YOU lost 1¢
Catastrophic Cancellation

A simple function. \(f(x) = \frac{1 - \cos x}{x^2} \)

Goal. Plot \(f(x) \) for \(-4 \cdot 10^{-8} \leq x \leq 4 \cdot 10^{-8}\).
Catastrophic Cancellation

A simple function. \[f(x) = \frac{1 - \cos x}{x^2} \]

Goal. Plot \(f(x) \) for \(-4 \cdot 10^{-8} \leq x \leq 4 \cdot 10^{-8}\).
Catastrophic Cancellation

```
public static double fl(double x) {
    return (1.0 - Math.cos(x)) / (x * x);
}
```

Ex. Evaluate $f_l(x)$ for $x = 1.1e-8$.

- $\text{Math.cos}(x) = 0.9999999999999988897769753748434595763683319091796875$.
 - Nearest floating point value agrees with exact answer to 16 decimal places.
- $(1.0 - \text{Math.cos}(x)) = 1.1102e-16$
 - Inaccurate estimate of exact answer $(6.05 \cdot 10^{-17})$
- $(1.0 - \text{Math.cos}(x)) / (x * x) = 0.9175$
 - 80% larger than exact answer (about 0.5)

Catastrophic cancellation. Devastating loss of precision when small numbers are computed from large numbers, which themselves are subject to roundoff error.
Numerical Catastrophes

Ariane 5 rocket. [June 4, 1996]
• 10 year, $7 billion ESA project exploded after launch.
• 64-bit float converted to 16 bit signed int.
• Unanticipated overflow.

Vancouver stock exchange. [November, 1983]
• Index undervalued by 44%.
• Recalculated index after each trade by adding change in price.
• 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]
• Failed to track scud; hit Army barracks, killed 28.
• Inaccuracy in measuring time in 1/20 of a second since using 24 bit binary floating point.
Gaussian Elimination
Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

\[\begin{align*}
0x_0 + x_1 + x_2 &= 4 \\
2x_0 + 4x_1 - 2x_2 &= 2 \\
0x_0 + 3x_1 + 15x_2 &= 36
\end{align*} \]

Matrix notation: find \(x \) such that \(Ax = b \)

\[
A = \begin{bmatrix}
0 & 1 & 1 \\
2 & 4 & -2 \\
0 & 3 & 15
\end{bmatrix}, \quad b = \begin{bmatrix}
4 \\
2 \\
36
\end{bmatrix}
\]

Fundamental problems in science and engineering.

- Chemical equilibrium.
- Linear and nonlinear optimization.
- Kirchoff's current and voltage laws.
- Hooke's law for finite element methods.
- Leontief's model of economic equilibrium.
- Numerical solutions to differential equations.
- ...
Chemical Equilibrium

Ex. Combustion of propane.

\[x_0 C_3H_8 + x_1 O_2 \Rightarrow x_2 CO_2 + x_3 H_2O \]

Stoichiometric constraints.

- Carbon: \(3x_0 = x_2 \).
- Hydrogen: \(8x_0 = 2x_3 \).
- Oxygen: \(2x_1 = 2x_2 + x_3 \).
- Normalize: \(x_0 = 1 \).

Remark. Stoichiometric coefficients tend to be small integers; among first hints suggesting the atomic nature of matter.
Kirchoff's Current Law

Ex. Find current flowing in each branch of a circuit.

Kirchoff's current law.

- \(10 = 1x_0 + 25(x_0 - x_1) + 50(x_0 - x_2)\).
- \(0 = 25(x_1 - x_0) + 30x_1 + 1(x_1 - x_2)\).
- \(0 = 50(x_2 - x_0) + 1(x_2 - x_1) + 55x_2\).

\{ \text{conservation of electrical charge} \}

Solution. \(x_0 = 0.2449, x_1 = 0.1114, x_2 = 0.1166.\)
Upper Triangular System of Equations

Upper triangular system. \(a_{ij} = 0 \) for \(i > j \).

\[
\begin{align*}
2x_0 + 4x_1 - 2x_2 &= 2 \\
0x_0 + 1x_1 + 1x_2 &= 4 \\
0x_0 + 0x_1 + 12x_2 &= 24
\end{align*}
\]

Back substitution. Solve by examining equations in reverse order.

- Equation 2: \(x_2 = 24/12 = 2 \).
- Equation 1: \(x_1 = 4 - x_2 = 2 \).
- Equation 0: \(x_0 = (2 - 4x_1 + 2x_2) / 2 = -1 \).

```plaintext
for (int i = N - 1; i >= 0; i--) {
    double sum = 0.0;
    for (int j = i+1; j < N; j++)
        sum += A[i][j] * x[j];
    x[i] = (b[i] - sum) / A[i][i];
}
```

\[
x_i = \frac{1}{a_{ii}} \left[b_i - \sum_{j=i+1}^{N-1} a_{ij} x_j \right]
\]
Gaussian Elimination

Gaussian elimination.
- Among oldest and most widely used solutions.
- Repeatedly apply row operations to make system upper triangular.
- Solve upper triangular system by back substitution.

Elementary row operations.
- Exchange row p and row q.
- Add a multiple α of row p to row q.

Key invariant. Row operations preserve solutions.
Gaussian Elimination: Row Operations

Elementary row operations.

\[
\begin{align*}
0 x_0 + 1 x_1 + 1 x_2 &= 4 \\
2 x_0 + 4 x_1 - 2 x_2 &= 2 \\
0 x_0 + 3 x_1 + 15 x_2 &= 36
\end{align*}
\]

(interchange row 0 and 1)

\[
\begin{align*}
2 x_0 + 4 x_1 - 2 x_2 &= 2 \\
0 x_0 + 1 x_1 + 1 x_2 &= 4 \\
0 x_0 + 3 x_1 + 15 x_2 &= 36
\end{align*}
\]

(subtract 3x row 1 from row 2)

\[
\begin{align*}
2 x_0 + 4 x_1 - 2 x_2 &= 2 \\
0 x_0 + 1 x_1 + 1 x_2 &= 4 \\
0 x_0 + 0 x_1 + 12 x_2 &= 24
\end{align*}
\]
Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot a_{pp}.

\[a_{ij} = a_{ij} - \frac{a_{ip}}{a_{pp}} a_{pj} \]
\[b_i = b_i - \frac{a_{ip}}{a_{pp}} b_p \]

\[
\begin{bmatrix}
0 & * & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * & *
\end{bmatrix}
\]

\[\Rightarrow \]
\[
\begin{bmatrix}
0 & * & * & * & * & * \\
0 & 0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & 0 & * \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

```java
for (int i = p + 1; i < N; i++) {
    double alpha = A[i][p] / A[p][p];
    b[i] -= alpha * b[p];
    for (int j = p; j < N; j++)
        A[i][j] -= alpha * A[p][j];
}
```
Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot a_{pp}.

\[
\begin{bmatrix}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & * \\
0 & * & * & * & *
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & * & * & * \\
0 & 0 & 0 & 0 & *
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

```cpp
for (int p = 0; p < N; p++) {
    for (int i = p + 1; i < N; i++) {
        double alpha = A[i][p] / A[p][p];
        b[i] -= alpha * b[p];
        for (int j = p; j < N; j++)
            A[i][j] -= alpha * A[p][j];
    }
}
```
Gaussian Elimination Example

\[
\begin{align*}
1x_0 &+ 0x_1 + 1x_2 + 4x_3 &= 1 \\
2x_0 &+ -1x_1 + 1x_2 + 7x_3 &= 2 \\
-2x_0 &+ 1x_1 + 0x_2 + -6x_3 &= 3 \\
1x_0 &+ 1x_1 + 1x_2 + 9x_3 &= 4
\end{align*}
\]
Gaussian Elimination Example

<table>
<thead>
<tr>
<th>1x₀ + 0x₁ + 1x₂ + 4x₃ = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x₀ + -1x₁ + -1x₂ + -1x₃ = 0</td>
</tr>
<tr>
<td>0x₀ + 1x₁ + 2x₂ + 2x₃ = 5</td>
</tr>
<tr>
<td>0x₀ + 1x₁ + 0x₂ + 5x₃ = 3</td>
</tr>
</tbody>
</table>
Gaussian Elimination Example

\[
\begin{align*}
 1x_0 &+ 0x_1 + 1x_2 + 4x_3 = 1 \\
 0x_0 &+ -1x_1 + -1x_2 + -1x_3 = 0 \\
 0x_0 &+ 0x_1 + 1x_2 + 1x_3 = 5 \\
 0x_0 &+ 0x_1 + -1x_2 + 4x_3 = 3
\end{align*}
\]
Gaussian Elimination Example

\[
\begin{align*}
1x_0 + 0x_1 + 1x_2 + 4x_3 &= 1 \\
0x_0 + -1x_1 + -1x_2 + -1x_3 &= 0 \\
0x_0 + 0x_1 + 1x_2 + 1x_3 &= 5 \\
0x_0 + 0x_1 + 0x_2 + 5x_3 &= 8
\end{align*}
\]
Gaussian Elimination Example

\[\begin{align*}
1x_0 + 0x_1 + 1x_2 + 4x_3 &= 1 \\
0x_0 + -1x_1 + -1x_2 + -1x_3 &= 0 \\
0x_0 + 0x_1 + 1x_2 + 1x_3 &= 5 \\
0x_0 + 0x_1 + 0x_2 + 5x_3 &= 8
\end{align*} \]

\[\begin{align*}
x_3 &= 8/5 \\
x_2 &= 5 - x_3 = 17/5 \\
x_1 &= 0 - x_2 - x_3 = -25/5 \\
x_0 &= 1 - x_2 - 4x_3 = -44/5
\end{align*} \]
Gaussian Elimination: Partial Pivoting

Remark. Previous code fails spectacularly if pivot $a_{pp} = 0$.

\[
\begin{align*}
1 x_0 & + 1 x_1 + 0 x_3 = 1 \\
2 x_0 & + 2 x_1 - 2 x_3 = -2 \\
0 x_0 & + 3 x_1 + 15 x_3 = 33 \\
\end{align*}
\]

\[
\begin{align*}
1 x_0 & + 1 x_1 + 0 x_3 = 1 \\
0 x_0 & + 0 x_1 - 2 x_3 = -4 \\
0 x_0 & + 3 x_1 + 15 x_3 = 33 \\
\end{align*}
\]

\[
\begin{align*}
1 x_0 & + 1 x_1 + 0 x_3 = 1 \\
0 x_0 & + 0 x_1 - 2 x_3 = -4 \\
0 x_0 & + \text{Nan} x_1 + \text{Inf} x_3 = \text{Inf} \\
\end{align*}
\]
Partial pivoting. Swap row p with the row that has largest entry in column p among rows i below the diagonal.

Q. What if pivot $a_{pp} = 0$ while partial pivoting?
A. System has no solutions or infinitely many solutions.
Gaussian Elimination with Partial Pivoting

```java
public static double[] lsolve(double[][] A, double[] b) {
    int N = b.length;
    // Gaussian elimination
    for (int p = 0; p < N; p++) {
        // partial pivot
        int max = p;
        for (int i = p + 1; i < N; i++)
            if (Math.abs(A[i][p]) > Math.abs(A[max][p]))
                max = i;
        double t = b[p]; b[p] = b[max]; b[max] = t;
        // zero out entries of A and b using pivot A[p][p]
        for (int i = p + 1; i < N; i++) {
            double alpha = A[i][p] / A[p][p];
            b[i] -= alpha * b[p];
            for (int j = p; j < N; j++)
                A[i][j] -= alpha * A[p][j];
        }
    }

    // back substitution
    double[] x = new double[N];
    for (int i = N - 1; i >= 0; i--)
        double sum = 0.0;
        for (int j = i + 1; j < N; j++)
            sum += A[i][j] * x[j];
    x[i] = (b[i] - sum) / A[i][i];
    return x;
}
```

~ $N^3/3$ additions,
~ $N^3/3$ multiplications

~ $N^2/2$ additions,
~ $N^2/2$ multiplications
Stability and Conditioning
Numerically Unstable Algorithms

Stability. Algorithm $f_l(x)$ for computing $f(x)$ is **numerically stable** if $f_l(x) \approx f(x+\varepsilon)$ for **some** small perturbation ε.

Nearly the right answer to nearly the right problem.

Ex 1. Numerically unstable way to compute $f(x) = \frac{1 - \cos x}{x^2}$

```java
public static double fl(double x) {
    return (1.0 - Math.cos(x)) / (x * x);
}
```

- $f_l(1.1\text{e}-8) = 0.9175$.

 \[f(x) = \frac{2 \sin^2(x/2)}{x^2} \]

 a numerically stable formula
Numerically Unstable Algorithms

Stability. Algorithm $f_{l}(x)$ for computing $f(x)$ is **numerically stable** if $f_{l}(x) \approx f(x+\varepsilon)$ for some small perturbation ε.

> Nearly the right answer to nearly the right problem.

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.

$$
a = 10^{-17}
$$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>x_0</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>no pivoting</td>
<td>0.0</td>
<td>1.0</td>
</tr>
<tr>
<td>partial pivoting</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>exact</td>
<td>$\frac{1}{1-2a} \approx 1$</td>
<td>$\frac{1-3a}{1-2a} \approx 1$</td>
</tr>
</tbody>
</table>

Theorem. Partial pivoting improves numerical stability.
Ill-Conditioned Problems

Conditioning. Problem is **well-conditioned** if \(f(x) \approx f(x+\varepsilon) \) for **all** small perturbation \(\varepsilon \).

Solution varies gradually as problem varies.

Ex. Hilbert matrix.
- Tiny perturbation to \(H_n \) makes it singular.
- Cannot solve \(H_{12} x = b \) using floating point.

\[
H_4 = \begin{bmatrix}
1 & 1/2 & 1/3 & 1/4 \\
1/2 & 1/3 & 1/4 & 1/5 \\
1/3 & 1/4 & 1/5 & 1/6 \\
1/4 & 1/5 & 1/6 & 1/7
\end{bmatrix}
\]

Hilbert matrix

Matrix condition number. [Turing, 1948] Widely-used concept for detecting ill-conditioned linear systems.
Stability and Conditioning

Accuracy depends on both stability and conditioning.
• Danger: apply unstable algorithm to well-conditioned problem.
• Danger: apply stable algorithm to ill-conditioned problem.
• Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of designing numerically stable algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating point solutions.
Lesson 2. Some problems are unsuitable to floating point solutions.
Lorenz attractor.
- Idealized atmospheric model to describe turbulent flow.
- Convective rolls: warm fluid at bottom, rises to top, cools off, and falls down.

\[
\begin{align*}
\frac{dx}{dt} &= -10(x - y) \\
\frac{dy}{dt} &= -xz + 28x - y \\
\frac{dz}{dt} &= xy - \frac{8}{3}z
\end{align*}
\]

\[x = \text{fluid flow velocity}\]
\[y = \nabla \text{temperature between ascending and descending currents}\]
\[z = \text{distortion of vertical temperature profile from linearity}\]

Solution. No closed form solution for \(x(t), y(t), z(t)\).
Approach. Numerically solve ODE.
Euler's Method

Euler's method. [to numerically solve initial value ODE]

• Choose Δt sufficiently small.

• Approximate function at time t by tangent line at t.

• Estimate value of function at time $t + \Delta t$ according to tangent line.

• Increment time to $t + \Delta t$.

• Repeat.

\[
\begin{align*}
x_{t+\Delta t} &= x_t + \Delta t \frac{dx}{dt}(x_t, y_t, z_t) \\
y_{t+\Delta t} &= y_t + \Delta t \frac{dy}{dt}(x_t, y_t, z_t) \\
z_{t+\Delta t} &= z_t + \Delta t \frac{dz}{dt}(x_t, y_t, z_t)
\end{align*}
\]

Advanced methods. Use less computation to achieve desired accuracy.

• 4th order Runge-Kutta: evaluate slope four times per step.

• Variable time step: automatically adjust timescale Δt.

• See COS 323.
public class Lorenz {

 public static double dx(double x, double y, double z) {
 return -10*(x - y);
 }

 public static double dy(double x, double y, double z) {
 return -x*z + 28*x - y;
 }

 public static double dz(double x, double y, double z) {
 return x*y - 8*z/3;
 }

 public static void main(String[] args) {
 double x = 0.0, y = 20.0, z = 25.0;
 double dt = 0.001;
 StdDraw.setXscale(-25, 25);
 StdDraw.setYscale(0, 50);

 while (true) {
 double xnew = x + dt * dx(x, y, z);
 double ynew = y + dt * dy(x, y, z);
 double znew = z + dt * dz(x, y, z);
 x = xnew; y = ynew; z = znew;
 StdDraw.point(x, z);
 }
 }
}

Euler's method
plot x vs. z
The Lorenz Attractor

% java Lorenz

(-25, 0) (25, 50)
The Lorenz Attractor

% java Lorenz

(-25, 0) to (25, 50)
Butterfly Effect

Experiment.
• Initialize $y = 20.01$ instead of $y = 20$.
• Plot original trajectory in blue, perturbed one in magenta.
• What happens?

Ill-conditioning.
• Sensitive dependence on initial conditions.
• Property of system, not of numerical solution approach.

Predictability: Does the Flap of a Butterfly's Wings in Brazil set off a Tornado in Texas? - Title of 1972 talk by Edward Lorenz