t. A
funchion s seid 1o be.cHiccurvcly calcu

Jable i s value can be found by some purcly
mechanical process. Although it is fairly easy to get
s ntuitve d5p of this dea.it is nevertclcss desinsple

to have ey ety e defnos,
smmﬁmmwuﬁmgmby al Pris neaon

e 19 93'Q
suggest
m y Bioone  KIoca T3 e ahall
ST
m@mmm,mmnmwmmh(cnmm,ss@ﬁ&
a
to the intuitive idea. 1 50 Post [1]). It
el e

ecively caleurab
o ey o @ tis s

.

e such plirase as “the function s effec culable,
“let F be a formula such that F (3) i convertibl
nsuch case there s no difficlty i sing how a:
Ine the values of the function cncerned, ind 3

ful

ofs that are given mm.mh

ly spe

e 555 an e s S0 ot out heorems nio cor
the cart ions wl
htake ony the values 0 and 1 ar o particular importance sinc they dete
‘mine and are deter by computabl prope y be seer by r
' and il roper

 the function. Such 4 property we s e reasor
o aing hs lcrms (1 11 s iving 3
setof axigms. th property o hold for a pven d only iitis p

bl o deduce i T holds Trom he axioms. AXi properics may
be this way. A property 1 of

o b chu .ma\ Al 5 piegen s sxiome
tic if an is a computable of two posiive
900 I ruc i a‘!’:u pmp'"y gnnﬁfmmv ) s true,
T u)ummnm and only f Bere s a W, rz.unumw(n).sm.m
n) conv
m oelie e there 13 o gengraily acceptcd meaning for s . T ahc Do et wo using
u

sense. The robal cwcmkcmnb(
formuts o the funcion calculys ufﬁnmanmd repl:
a typical number theoretic

itrary

N n variables by primitive recursive relations. The resulting formula

Tl Scnse we shal e & theorem ofth form -0, () vanishes for infin

5 2 numbers £, where 0 (2 18 8 prirafive fecursive: fabction. (CPHmiive recursive functions of natural mumbers are

defined in ucnvcly as follows.* The class of i ict e computabl funcions, but has the advantage
{4 thre s procsss mhereby e can el of 8 st of equaions whether it imiti ion in abov

16 Gy .op) s primitive recursive than ¢ G .1, - i described as a primitive recusive between z,...,) We shall say that a roblem

has been shown that lraasolunun of the problem may be ¢ in the form of 1 proG ofone or more qumber thsoretic

v.beomm ncan-nnly we may saythat  lassof problems is number thcortc i th solution of uny one o them can be transformed (by

uniform proofs

theoreic theorems',and i section ™ willy o justity mnﬁmng o considerations i i type of PoDIom. AD.alteraative form for' number

' for each natura number  there &xists a natural number y such thit & .yvlm«l\ts Where ¢ (x.) is primitive recursive

and convemely. In othr words, mmuamewhawwmmeﬁmmma(x) we unﬁndaﬁmmomq) uyS or ngﬁ: % () we oan find a

fun (] that ‘0 (
05 e de (e = ?éy)+x(x]whn;x(x.}')&\h="(mmmeemva) o 3:/3(67'??"( f (if() £
oforhend Rtine b 4
0,61 m?)))'&uem(x)uw K s e g ?mahr e and 35 i Beinda.
ifx1s & multple of 3. Th mﬁmmma(x)umbedeﬁnedh meeq\unonsb(m .a
Shall now shor Zons s  the truth of statc
identically’, where f(2) & P ean b
i £(x) is git ie. that the mldnne Whlch should calculate (x) ls
da’nd;ﬁlaemf( ]m ) Thet = e o e Horbrand G0 ence- @ sherctore el
e s defined
by one of the s of equations -)—?) I’f@\ xy=hGrx 8 kr,“ ) B g Ty 1 ST O 0 G B)=F e, )5 () 0 (1) 58

Universality and Computability

Fundamental questions:

Q. What is a general-purpose computer?

Q. Are there limits on the power of digital computers?

Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.

* Princeton == center of universe.
* Automata, languages, computability, universality, complexity, logic

- 4;? % o

David Hilbert Kurt Gadel Alan Turing Alonzo Church John von Neumann

Context: Mathematics and Logic

Mathematics. Any formal system powerful enough to express arithmetic.

Principia Mathematics
Peano arithmetic
Zermelo-Fraenkel set theory

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Can't prove contradictions like 2 + 2 = 5.
Decidable. Algorithm exists to determine truth of every statement.

Q. [Hilbert, 1900] Is mathematics complete and consistent?
A. [Godel's Incompleteness Theorem, 1931] Nolll

Q. [Hilbert's Entscheidungsproblem] Is mathematics decidable?
A. [Church 1936, Turing 1936] No!

7.4 Turing Machines (revisited)

Alan Turing (1912-1954) Turing Machine by Tom Dunne
American Scientist, March-April 2002




Turing Machine

Desiderata. Simple model of computation that is "as powerful" as
conventional computers.

Intuition. Simulate how humans calculate.

Last lecture: DFA

Tape.

» Stores input.

* One arbitrarily long strip, divided into cells.
* Finite alphabet of symbols.

Ex. Addition.
Tape head. ®
* Points to one cell of tape. START
* Reads a symbol from active cell. - [JroTsTooT
* Moves right one cell at a time. g °
1 2 3 4 5 6
+ 3 1 4 1 5 9
tape head
!
tape 0 0 1 i 0 i 1 0
This lecture: Turing machine Last lecture: Deterministic Finite State Automaton (DFA)
Tape. Simple machine with N states.

* Stores input, output, and intermediate results.
* One arbitrarily long strip, divided into cells.
* Finite alphabet of symbols.

tape head

Tape head.

* Points to one cell of tape.

* Reads a symbol from active cell.
» Writes a symbol to active cell.

* Moves left or right one cell at a time. @ReSET

@ START

tape head

tape # 1 1 n 0 + 1 0 1 1 #

* Begin in start state.

* Read first input symbol.

* Move to new state, depending on current state and input symbol.
* Repeat until last input symbol read.

* Accept input string if last state is labeled V.

DFA

Input a b




This lecture: Turing Machine

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move to new state and write new symbol on tape, depending on current state
and input symbol.

 Move tape head left if state is labeled L, right if state is labeled R.

* Repeat until entering a state labelled ¥, N, or H.

* Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

if in this state and tape head is 1:
0 :1 - writea 0
- stay in this state
- move tape head left

™ P 0

Input # # 1 0 1 1 1 o0 1

TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move to new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

* Repeat until entering a state labelled ¥, N, or H.

* Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

if in this state and tape head is 0:
0 : 1 - writea 1
- go to other state
+ halt

™ P 0

Input # # 1 0 1 1 1 o0 O

TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move to new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

* Repeat until entering a state labelled Y, N, or H.

* Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

/

Output # # 1 0 1 1 1 1 O

TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move to new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

* Repeat until entering a state labelled Y, N, or H.

* Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

/

™ 1:0

Input # # 1 0o 1 1 1 0 1
Output




Turing Machine: Initialization and Termination

Initialization. Set input on some portion of tape; set tape head.

tape head

tape 4..#o1o+1111#

Termination. Stop if enter yes, no, or halt state.

Note: infinite loop possible

Output. Contents of tape.

TM Example 1: Binary Increment

TM Example 1: Binary Increment

TM Example 1: Binary Increment




TM Example 1: Binary Increment

TM Example 2: Continuous Binary Counter

# :#
0 : 1
i
1
#:1

TM Example 2: Continuous Binary Counter

# :#

0:1 /
—
1:0

#:1

TM Example 2: Continuous Binary Counter

# :#
0 : 1
i
1:
#:1

20




TM Example 2: Continuous Binary Counter

# : #
0 : 1
i
1:0
#:1

TM Example 2: Continuous Binary Counter

# :#
Jjust move R 0 : 1
and stay in state /
if no arc \
1:0
#:1

21
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TM Example 2: Continuous Binary Counter

# : #
0 :1
e
1:0
#:1

TM Example 2: Continuous Binary Counter

# : #
0 :1
e
1:0
# 01

23
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TM Example 2: Continuous Binary Counter

# : #
0 :1
e
1:0
# 01

counts,

never halts # # 1 0 0

**

TM Example 3: Binary Decrement

25
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TM Example 3: Binary Decrement

27

28




TM Example 3: Binary Decrement

TM Example 3: Binary Decrement

Q. What happens if we try to decrement O ?

29
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TM Example 3: Binary Decrement

Q. What happens if we try to decrement O ?
A. Doesn't halt! (TMs can have bugs, too.)

TM Example 4: Binary Adder

subtract one from'y find plus sign

add one to x

Ex. Use simulator to understand how this TM works.

31
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7.5 Universality

Universal Machines and Technologies

R
t >

e

—

Dell PC iMac Diebold voting machine iPod Printer

.
g% A

=2
JAVA

Java language

Xbox Tivo Turing machine T0Y

5 qubit 215 Hz Q. Processor

MS Excel Blackberry

DNA computer

Quantum computer Python language

33 34
Program and Data Program and Data
Data. Sequence of symbols (interpreted one way). Data. Sequence of symbols (interpreted one way).
Program. Sequence of symbols (interpreted another way). Program. Sequence of symbols (interpreted another way).
Ex 1. A compiler is a program that takes a program in one language Ex 2. A simulator is a program that takes a program for one machine
as input and outputs a program in another language. ™ o as input and simulates the operation of that program.
machine language
Data for
simulator \ i;ﬁ;zdﬁer&ur
2 R
0L
Your program \ é i
Tublic class HelloWorld g i
public static void main(String[] args) edges
{ <«— is DATA tfo a compiler 0001
System.out.println("Hello, World"); g }] 1 2
} .0 13+ +
) 20 # #
32#1
3201
3310
4 41 #
45 4 #
tape \is a PROGRAM!
(1] 01 0+1111
35 36




Representations of a Turing Machine

Graphical: Continuous
Binary
Counter
Tabular: Current Symbol Symbol to | Next Direction
state read write State rectio
A 0 0 A R
A 1 1 A R
A # # B L
B 0 1 A R
B 1 0 B L
B # 1 A R

Linear: *AOOAR*AI1AR*A##BL*BO1AR*B10BL...

Universal Turing Machine

CBC's Tape state, symbol CBC's Description
e o o 1|0 (¥ |1 |# I!BO!'*A'OOAR*A'
UTM Operation:
* Find state, symbol in Description UTM

* Copy new symbol to CBI's tape
* Move ¥ L or R

* Update state, symbol

* Repeat

37
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Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).

x —> M —> M(x)

data x

TM infuition. Software program that solves one particular problem.

Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).

Universal Turing machine U. Given input tape with xand M,
universal Turing machine U outputs M(x).

M —>
x —> M —> M(x) U —> M(x)
X —
# 0o 1 1 # # 0 1 1 # 1 0 1 1 #
data x data x program M

TM infuition. Software program that solves one particular problem.
UTM intuition. Hardware platform that can implement any algorithm.

39

40




Universal Turing Machine

Consequences. Your laptop (a UTM) can do any computational task.
« Java programming. \
o Di . . even tasks not yet contemplated
Pictures, music, movies, games. when laptop was purchased
* Email, browsing, downloading files, telephony.
* Word-processing, finance, scientific computing.

f,} “ Again, it [the Analytical Engine] might act upon other things besides
Y’ numbers... the engine might compose elaborate and scientific pieces of

N music of any degree of complexity or extent. ” — Ada Lovelace
Iy

Church-Turing Thesis

Church Turing thesis (1936). Turing machines can do anything that can be
described by any physically harnessable process of this universe.

Remark. "Thesis" and not a mathematical theorem because it's a statement
about the physical world and not subject to proof.
N but can be falsified
Use simulation to prove models equivalent.
* TOY simulator in Java
 Java compiler in TOY.

Implications.
* No need to seek more powerful machines or languages.

* Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

41 42
Church-Turing Thesis: Evidence
Evidence. "universal" 7 6 Com u.‘,abi l I'.r
* 7 decades without a counterexample. / : p y
* Many, many models of computation that turned out to be equivalent.
enhanced Turing machines multiple heads, multiple tapes, 2D tape, hondeterminism
untyped lambda calculus method to define and manipulate functions Take any definite unsolved problem, such as the question as to the
: i . o i ; irrationality of the Euler-Mascheroni constant vy, or the existence of an
recursive functions functions dealing with computation on integers infinite number of prime numbers of the form 21, However
unrestricted grammars iterative string replacement rules used by linguists unapproachable these problems may seem to us and however helpless we
. stand before them, we have, nevertheless, the firm conviction that their
extended L-systems parallel string replacement rules that model plant growth i . X
solution must follow by a finite number of purely logical processes.

programming languages Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel

. . . ) -David Hilbert, in his 1900 address to the International
random access machines registers plus main memory, e.g., TOY, Pentium

Congress of Mathematics
cellular automata cells which change state based on local interactions
quantum computer compute using superposition of quantum states
DNA computer compute using biological operations on DNA
Introduction to Computer Science + Sedgewick and Wayne - Copyright © 2007 - http://www.cs.Princeton.EDU/IntroCS
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A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 1: v A P .
H H H H N =14
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 1: v A P .
H H H H N =14
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

Solution 1.
# Yes.

45
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A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 2: A R A A
H H H H N=14
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 2: A R A A
H H H H N=14
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

Solution 2.
# No. First card in solution must contain same letter in leftmost
position.

47
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A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

T

* Is it possible to arrange cards so that top and bottom strings match?

Challenge:
* Write a program to take cards as input and solve the puzzle.

A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Ll

* Is it possible to arrange cards so that top and bottom strings match?

Challenge:
* Write a program to take cards as input and solve the puzzle.

Surprising fact:
* It is NOT POSSIBLE to write such a program!

49
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Halting Problem

Halting problem. Write a Java function that reads in a Java function £
and its input x, and decides whether £ (x) results in an infinite loop.

Easy for some functions, not so easy for others.

Ex. Does £ (x) terminate?

relates to famous

public void f (int x)
open math conjecture

{
while (x !'= 1)
{

if (x $2==0) x=x/ 2;
else x = 3*x + 1;
}
}
£(6) : 63105168421
£(27): 27 82 41 124 62 31 94 47 142 71 214 107 322 .. 4 2 1

£(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 .. -17 ..

Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists fo solve it.

N

and (by universality) no Java program either

Theorem. [Turing 1937] The halting problem is undecidable.

Proof intuition: lying paradox.
* Divide all statements into two categories: truths and lies.
* How do we classify the statement: I am lying” ?

Key element of lying paradox and halting proof: self-reference.

51
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Halting Problem: Preliminaries

Some programs fake other programs as input
+ Java compiler, e.g.

Can a program take itself as input ??
Why not ?
* TextGenerator could take TextGenerator.java as input, produce a Markov
model of itself, and generate Java-like text.

* GuitarHero could "play” the characters in GuitarHero.java.

* Almost always a peculiar thing to do, but we'll be interested only in
whether the program halts, or goes into an infinite loop.

Halting Problem Proof

Assume the existence of halt (£,x):
e Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Note. halt(f,x) does hot go into infinite loop.

We prove by contradiction that halt (£,x) does not exist.
* Reductio ad absurdum : if any logical argument based on an assumption
leads to an absurd statement, then assumption is false.

encode f and x as strings

/ \

public boolean halt(String £, String x)
{

if ( something terribly clever ) return true;
else return false;

hypothetical halting function

53

54

Halting Problem Proof

Assume the existence of halt (£,x):
e Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
e If halt (£, £) returns true, then strange (£) goes into an infinite loop.
¢ If nalt (£, £) returns false, then strange (£) halts.

\

f is a string so it is legal (if perverse) to use it for second argument

public void strange(String f£)
{
if (halt(f, £f))

while (true) { } // an infinite loop

Halting Problem Proof

Assume the existence of halt (£,x):
e Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
e If halt (£, £) returns true, then strange (£) goes into an infinite loop.
¢ If nalt (£, £) returns false, then strange (£) halts.

In other words:
o If £(£) halts, then strange (£) goes into an infinite loop.
e If £(£) does not halt, then strange (£) halts.

55
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Halting Problem Proof

Assume the existence of halt (£,x):
e Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
e If halt (£, £) returns true, then strange (£) goes into an infinite loop.
¢ If nalt (£, £) returns false, then strange (£) halts.

In other words:
o If £(£) halts, then strange (£) goes into an infinite loop.
« If £(£) does not halt, then strange (£) halts.

Call strange () with ITSELF as input.
e If strange (strange) halts then strange (strange) does hot halt.
¢ If strange (strange) does nhot halt then strange (strange) halts.

Halting Problem Proof

Assume the existence of halt (£,x):
e Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
e If halt (£, £) returns true, then strange (£) goes into an infinite loop.
¢ If nalt (£, £) returns false, then strange (£) halts.

In other words:
o If £(£) halts, then strange (£) goes into an infinite loop.
e If £(£) does not halt, then strange (£) halts.

Call strange () with ITSELF as input.
e If strange (strange) halts then strange (strange) does hot halt.
¢ If strange (strange) does not halt then strange (strange) halts.

Either way, a contradiction. Hence halt(£,x) cannot exist. “
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Consequences

Q. Why is debugging hard?
A. All problems below are undecidable.

Halting problem. Give a function f, does it halt on a given input x?
Totality problem. Give a function f, does it halt on every input x?
No-input halting problem. Give a function f with no input, does it halt?
Program equivalence. Do two functions f and g always return same value?
Uninitialized variables. Is the variable x initialized before it's used?
Dead-code elimination. Does this statement ever get executed?

Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Ll

* Is it possible to arrange cards so that top and bottom strings match?

Puzzle:

Challenge:
* Write a program to take cards as input and solve the puzzle.

is UNDECIDABLE

59

60




More Undecidable Problems

Hilbert's 10th problem.
* "Devise a process according to which it can be determined by a finite number of
operations whether a given multivariate polynomial has an integral root.”

Examples.

e f(x,y, z) = 6x3y 2% + 3xy? - x3 - 10.
e f(x,y) = x2+y%-3.
cf(x,y,z)=x"+y"- 2"

yes: f(5,3,0)=0

no
yesifn=2,x=3,y=4,z=5
noifn=3and x,y,z>0.
(Fermat's Last Theorem)

TTTT

Andrew Wiles, 1995

More Undecidable Problems

Optimal data compression. Find the shortest program to produce a given
string or picture.

Mandelbrot set (40 lines of code)

61 62
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More Undecidable Problems Turing's Key Ideas
Virus identification. Is this program a virus? @
\D Turing machine.
Private Sub AutoOpen () formal model of computation
On Error Resume Next
If System.PrivateProfileString("", CURRENT USER\Software\Microsoft\Office\9.0\Word\Security", Pr'ogr'am and dClTCl.
"Level") <> "" Then
CommandBars ("Macro") .Controls ("Security. ..") .Enabled = False encode program and data as sequence of symbols
For 0o = 1 To AddyBook.AddressEntries.Count : ; Universality.
Peep = AddyBook.AddressEntries (x) Can write programs in MS Word. y
BreakUmOffASlice.Recipients.Add Peep This statement disables security. concept of general-purpose, programmable computers
x=x+1 . .
If x > 50 Then oo = AddyBook.AddressEntries.Count Chur‘ch-Tumng thesis.
Next oo
5o o= computable at all == computable with a Turing machine
BreakUmOffASlice.Subject = "Important Message From " & Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)" Compu-l'ablll'fy
inherent limits to computation
Melissa virus
March 28, 1999 /
\_ Hailed as one of top 10 science papers of 20™ century.
Reference: On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing.
In Proceedings of the London Mathematical Society, ser. 2. vol. 42 (1936-7), pp.230-265.
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Alan Turing
1912-1954
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