

Universality and Computability

Fundamental questions:

- Q. What is a general-purpose computer?
- Q. Are there limits on the power of digital computers?
- Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.

• Princeton == center of universe.

Kurt Gödel

• Automata, languages, computability, universality, complexity, logic

Alan Turing

David Hilbert

Alonzo Church Joh

Context: Mathematics and Logic

Mathematics. Any formal system powerful enough to express arithmetic.

Principia Mathematics Peano arithmetic Zermelo-Fraenkel set theory

Complete. Can prove truth or falsity of any arithmetic statement. Consistent. Can't prove contradictions like 2 + 2 = 5. Decidable. Algorithm exists to determine truth of every statement.

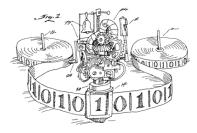
Q. [Hilbert, 1900] Is mathematics complete and consistent?

A. [Gödel's Incompleteness Theorem, 1931] No!!!

Q. [Hilbert's Entscheidungsproblem] Is mathematics decidable?

A. [Church 1936, Turing 1936] No!

7.4 Turing Machines (revisited)



Alan Turing (1912-1954)

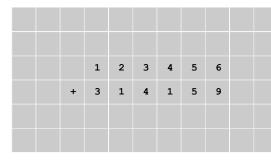
Turing Machine by Tom Dunne American Scientist, March-April 2002

Turing Machine

Desiderata. Simple model of computation that is "as powerful" as conventional computers.

Intuition. Simulate how humans calculate.

Ex. Addition.



Last lecture: DFA

Tape.

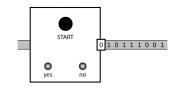
- Stores input.
- One arbitrarily long strip, divided into cells.

tape head

• Finite alphabet of symbols.

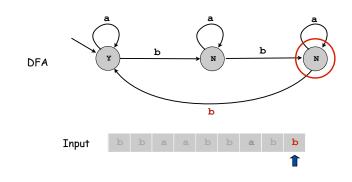
Tape head.

- Points to one cell of tape.
- Reads a symbol from active cell.
- Moves right one cell at a time.



0 0 1 1 0 1 1 0 ... tape 5 This lecture: Turing machine Last lecture: Deterministic Finite State Automaton (DFA) Simple machine with N states. • Begin in start state. • Stores input, output, and intermediate results. • Read first input symbol. • One arbitrarily long strip, divided into cells. • Move to new state, depending on current state and input symbol. • Finite alphabet of symbols.

- Repeat until last input symbol read.
- Accept input string if last state is labeled Y.

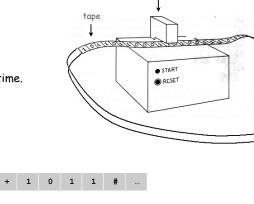


Tape head.

tape

Tape.

- Points to one cell of tape.
- Reads a symbol from active cell.
- Writes a symbol to active cell.
- Moves left or right one cell at a time.



tape head

1 1

tape head

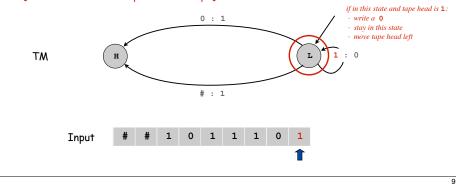
0

This lecture: Turing Machine

TM Example

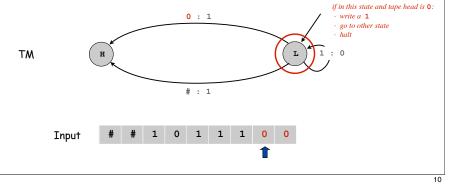
Simple machine with N states.

- Begin in start state.
- Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol.
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labelled Y, N, or H.
- Accept input string if state is labeled Y, reject if N [or leave result of computation on tape].



Simple machine with N states.

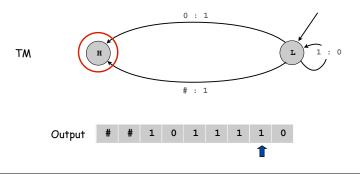
- Begin in start state.
- Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol.
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labelled Y, N, or H.
- Accept input string if state is labeled Y, reject if N [or leave result of computation on tape].



TM Example

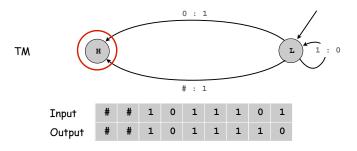
Simple machine with N states.

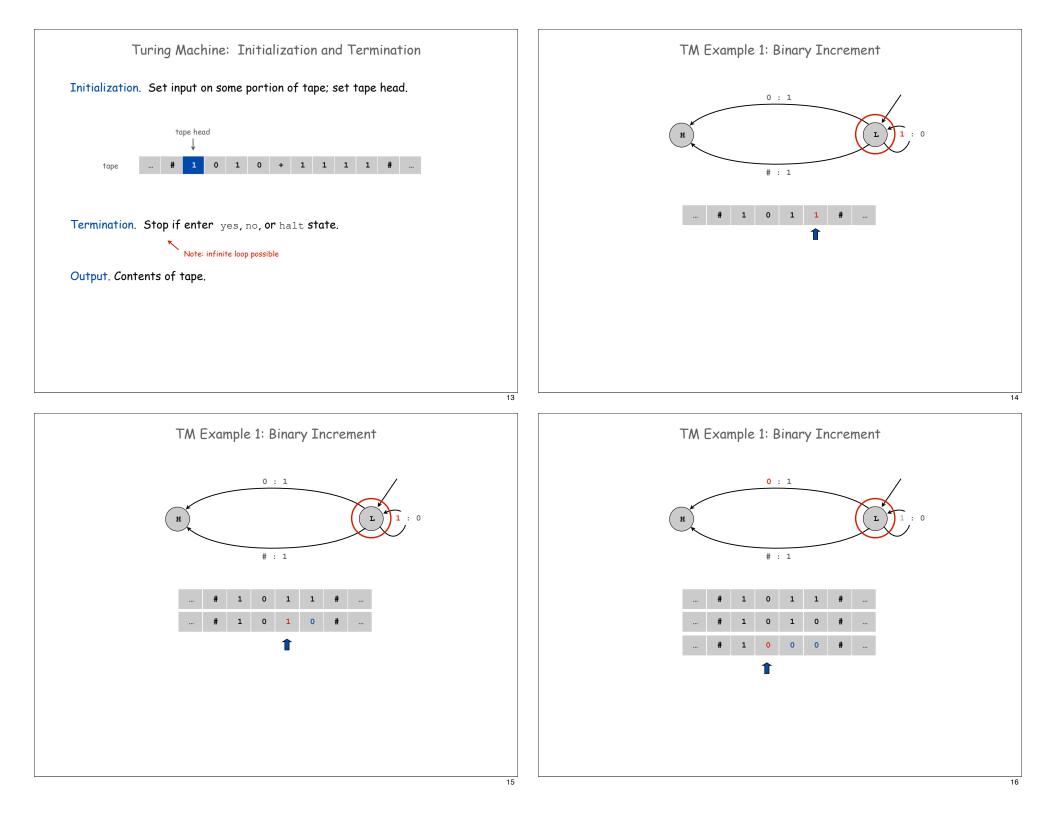
- Begin in start state.
- Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol.
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labelled Y, N, or H.
- Accept input string if state is labeled Y, reject if N [or leave result of computation on tape].



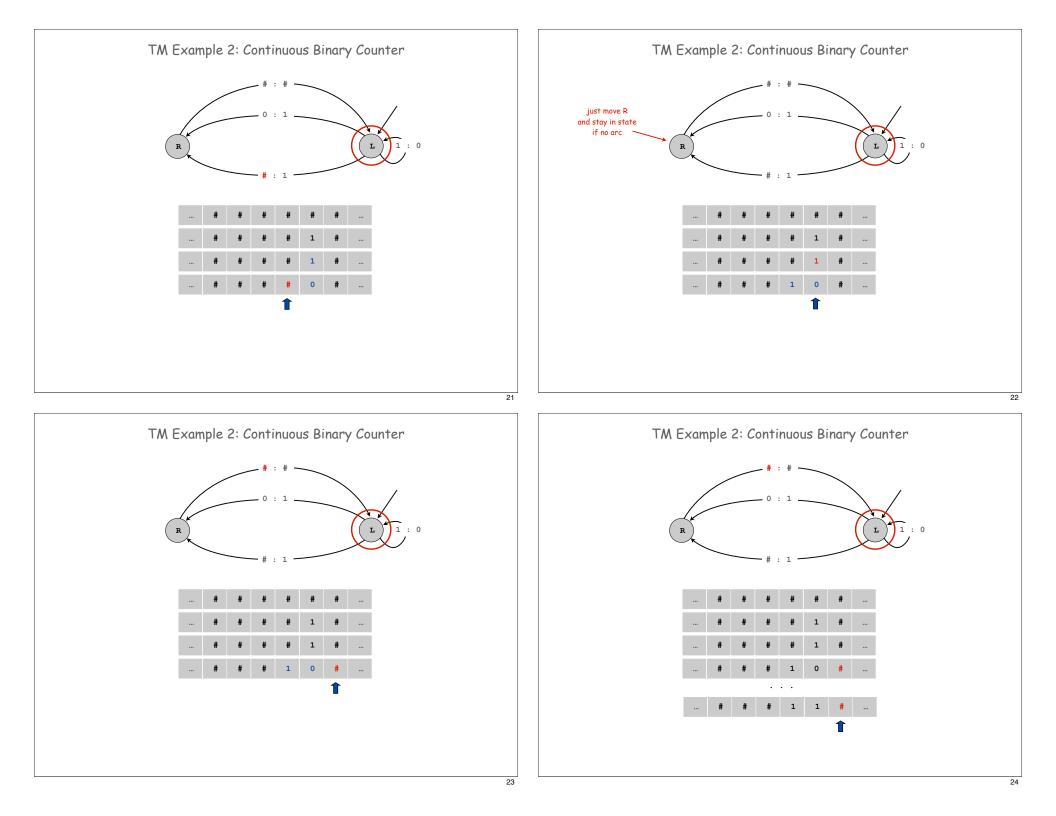
Simple machine with N states.

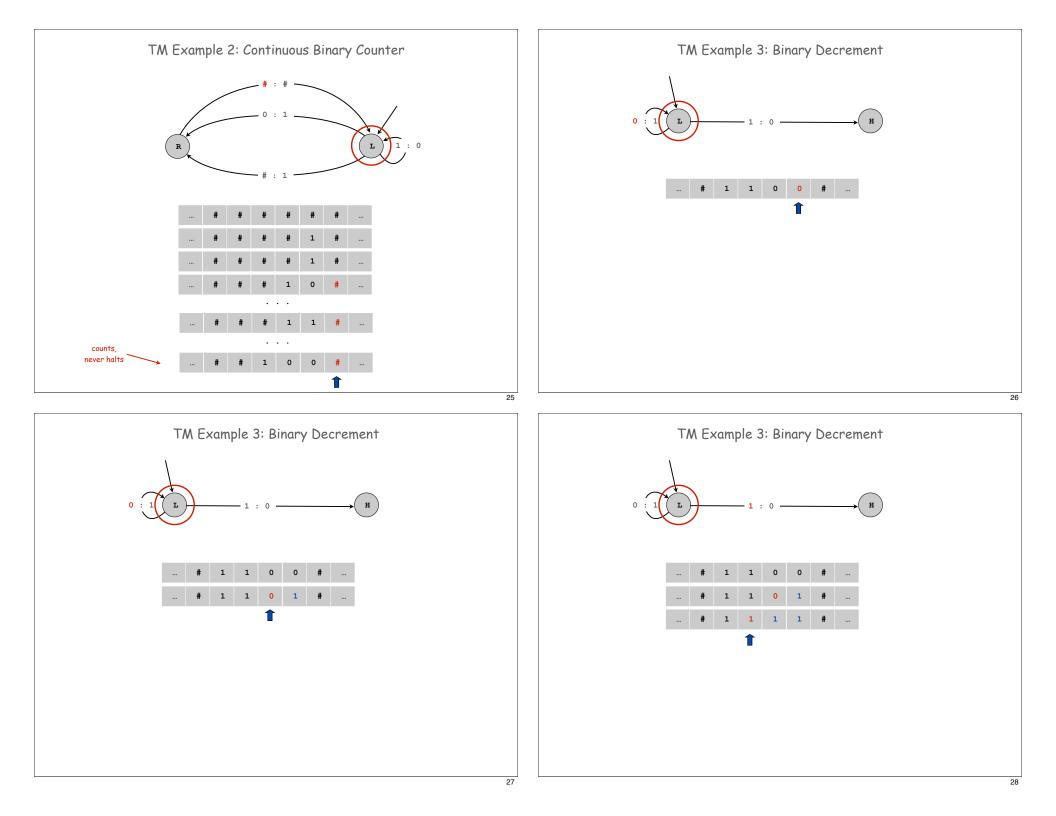
- Begin in start state.
- Read first input symbol.
- Move to new state and write new symbol on tape, depending on current state and input symbol.
- Move tape head left if state is labeled L, right if state is labeled R.
- Repeat until entering a state labelled Y, N, or H.
- Accept input string if state is labeled Y, reject if N [or leave result of computation on tape].

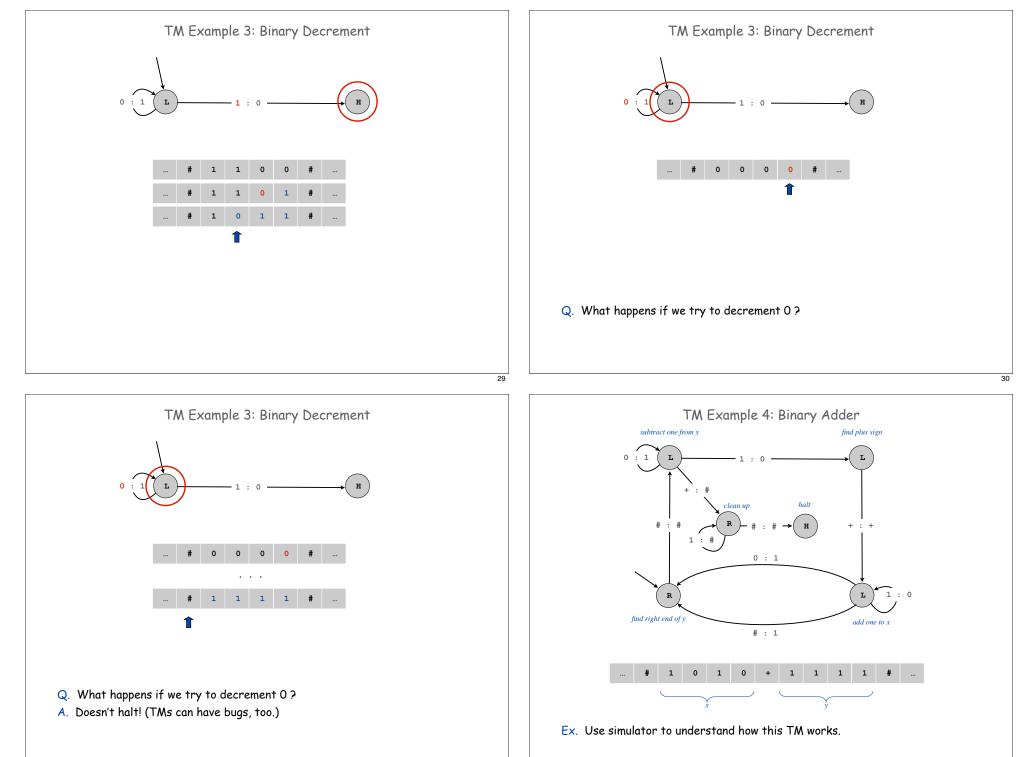


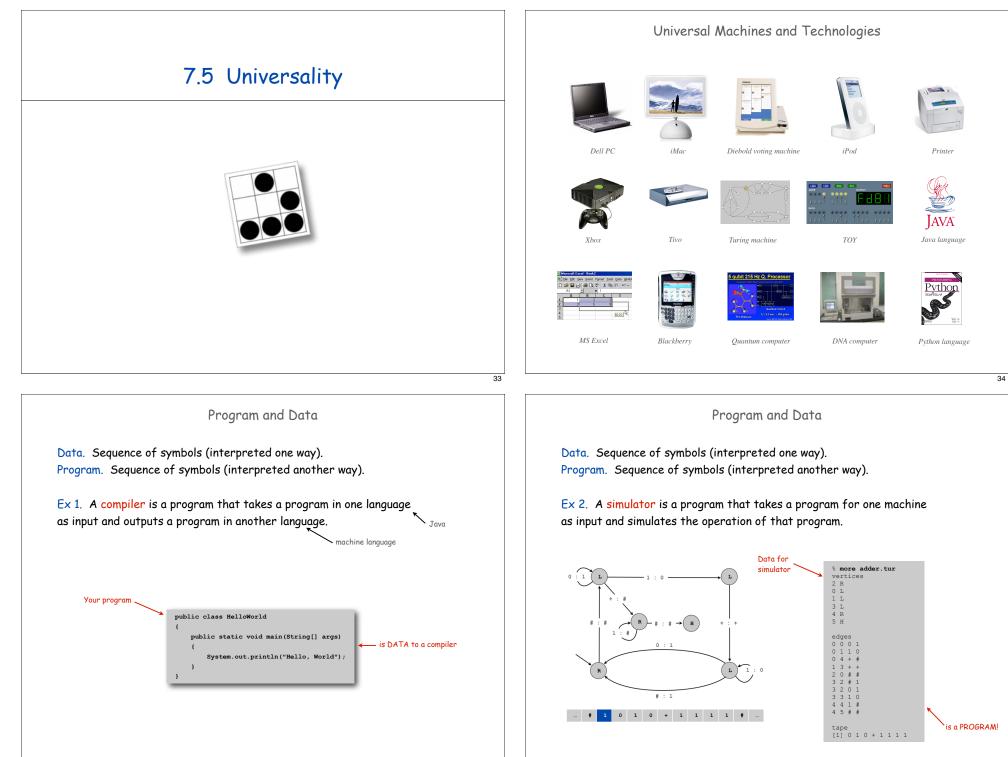


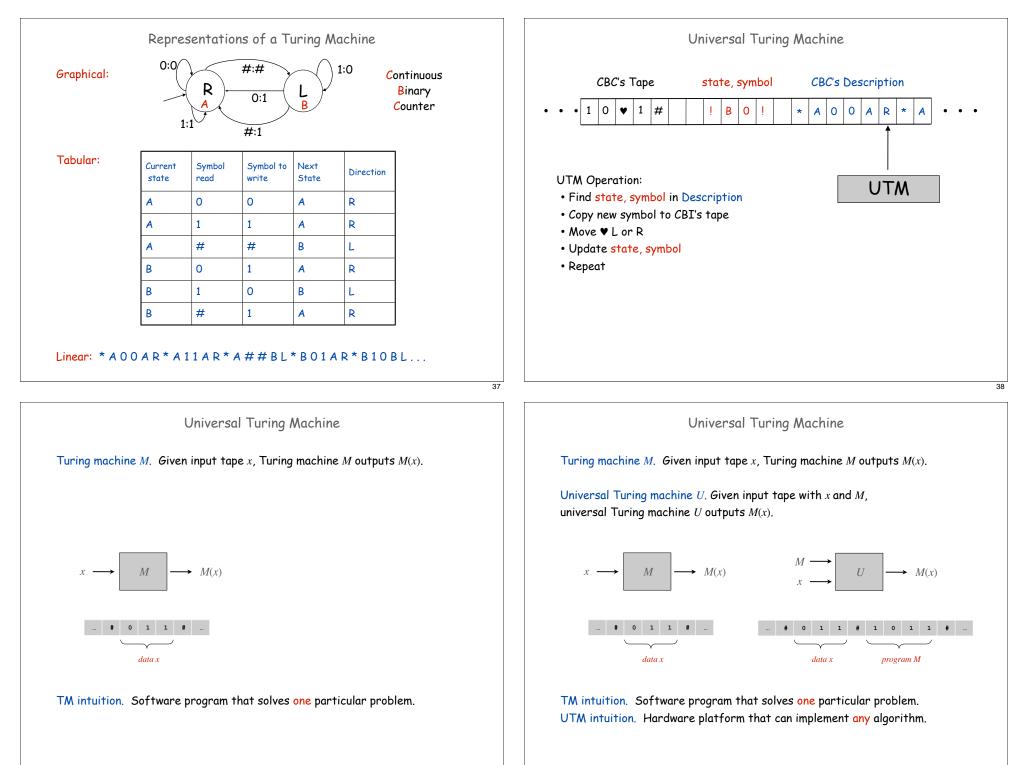












Universal Turing Machine

Consequences. Your laptop (a UTM) can do any computational task.

• Java programming.

- Pictures, music, movies, games.
- Email, browsing, downloading files, telephony.
- Word-processing, finance, scientific computing.
- . . .

Again, it [the Analytical Engine] might act upon other things besides numbers...the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent. " — Ada Lovelace Church-Turing Thesis

Church Turing thesis (1936). Turing machines can do anything that can be described by any physically harnessable process of this universe.

Remark. "Thesis" and not a mathematical theorem because it's a statement about the physical world and not subject to proof.

but can be falsified

Use simulation to prove models equivalent.

- TOY simulator in Java
- Java compiler in TOY.

Implications.

- No need to seek more powerful machines or languages.
- Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

Church-Turing Thesis: Evidence

Evidence.

- 7 decades without a counterexample.
- Many, many models of computation that turned out to be equivalent.

model of computation	description		
enhanced Turing machines	multiple heads, multiple tapes, 2D tape, nondeterminism		
untyped lambda calculus	method to define and manipulate functions		
recursive functions	functions dealing with computation on integers		
unrestricted grammars	iterative string replacement rules used by linguists		
extended L-systems	parallel string replacement rules that model plant growth		
programming languages	Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel		
random access machines	registers plus main memory, e.g., TOY, Pentium		
cellular automata	cells which change state based on local interactions		
quantum computer	compute using superposition of quantum states		
DNA computer	compute using biological operations on DNA		

"universal /

41

even tasks not yet contemplated

when laptop was purchased

7.6 Computability

Take any definite unsolved problem, such as the question as to the irrationality of the Euler-Mascheroni constant γ , or the existence of an infinite number of prime numbers of the form 2ⁿ-1. However unapproachable these problems may seem to us and however helpless we stand before them, we have, nevertheless, the firm conviction that their solution must follow by a finite number of purely logical processes.

-David Hilbert, in his 1900 address to the International Congress of Mathematics

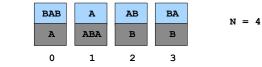
Introduction to Computer Science · Sedgewick and Wayne · Copyright © 2007 · http://www.cs.Princeton.EDU/IntroCS

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Example 1:



Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

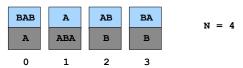
Example 2:

Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.



Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Solution 1.

🖋 Yes.

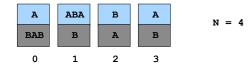
A	BA	BAB	AB	A
ABA	в	A	в	ABA
1	3	0	2	1
1	3	0	2	1

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Example 2:



Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Solution 2.

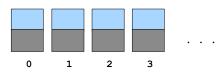
No. First card in solution must contain same letter in leftmost position.

45

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.



Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Challenge:

• Write a program to take cards as input and solve the puzzle.

A Puzzle: Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.

Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Challenge:

• Write a program to take cards as input and solve the puzzle.

Surprising fact:

• It is NOT POSSIBLE to write such a program!

Halting Problem

Halting problem. Write a Java function that reads in a Java function f and its input x, and decides whether f(x) results in an infinite loop.

Easy for some functions, not so easy for others.

Ex. Does f(x) terminate?

```
      f(6):
      6 3 10 5 16 8 4 2 1

      f(27):
      27 82 41 124 62 31 94 47 142 71 214 107 322 ... 4 2 1

      f(-17):
      -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 ... -17 ...
```

Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists to solve it.

Theorem. [Turing 1937] The halting problem is undecidable.

Proof intuition: lying paradox.

- Divide all statements into two categories: truths and lies.
- How do we classify the statement: "I am lying" ?

Key element of lying paradox and halting proof: self-reference.

49

Halting Problem: Preliminaries

Some programs take other programs as input

• Java compiler, e.g.

Can a program take itself as input ??

Why not?

- TextGenerator could take TextGenerator.java as input, produce a Markov model of itself, and generate Java-like text.
- GuitarHero could "play" the characters in GuitarHero.java.
- Almost always a peculiar thing to do, but we'll be interested only in whether the program halts, or goes into an infinite loop.

Halting Problem Proof

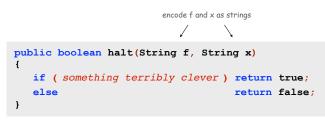
Assume the existence of halt(f,x):

- Input: a function £ and its input x.
- Output: true if f(x) halts, and false otherwise.

Note. halt(f,x) does not go into infinite loop.

We prove by contradiction that halt(f,x) does not exist.

• Reductio ad absurdum : if any logical argument based on an assumption leads to an absurd statement, then assumption is false.



hypothetical halting function

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function f and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) holts.

```
f is a string so it is legal (if perverse) to use it for second argument
```

```
public void strange(String f)
{
    if (halt(f, f))
    {
        while (true) { } // an infinite loop
    }
}
```

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function f and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) halts.

In other words:

- If f(f) halts, then strange(f) goes into an infinite loop.
- If f(f) does not halt, then strange(f) halts.

53

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function £ and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) holts.

In other words:

- If f(f) halts, then strange(f) goes into an infinite loop.
- If f(f) does not halt, then strange(f) halts.

Call strange() with ITSELF as input.

- If strange (strange) holts then strange (strange) does not holt.
- If strange (strange) does not halt then strange (strange) halts.

Halting Problem Proof

Assume the existence of halt(f,x):

- Input: a function £ and its input x.
- Output: true if f(x) halts, and false otherwise.

Construct function strange(f) as follows:

- If halt(f,f) returns true, then strange(f) goes into an infinite loop.
- If halt(f,f) returns false, then strange(f) halts.

In other words:

- If f(f) halts, then strange(f) goes into an infinite loop.
- If f(f) does not halt, then strange(f) halts.

Call strange() with ITSELF as input.

- If strange (strange) halts then strange (strange) does not halt.
- If strange (strange) does not halt then strange (strange) halts.

Either way, a contradiction. Hence halt(f, x) cannot exist.

58

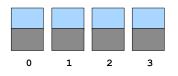
Consequences

- Q. Why is debugging hard?
- A. All problems below are undecidable.

Halting problem. Give a function f, does it halt on a given input x? Totality problem. Give a function f, does it halt on every input x? No-input halting problem. Give a function f with no input, does it halt? Program equivalence. Do two functions f and g always return same value? Uninitialized variables. Is the variable x initialized before it's used? Dead-code elimination. Does this statement ever get executed? Post's Correspondence Problem

Given a set of cards:

- N card types (can use as many copies of each type as needed).
- Each card has a top string and bottom string.



Puzzle:

• Is it possible to arrange cards so that top and bottom strings match?

Challenge:

• Write a program to take cards as input and solve the puzzle.

is UNDECIDABLE

More Undecidable Problems

Hilbert's 10th problem.

• "Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root."

Examples.

- $f(x, y, z) = 6x^3yz^2 + 3xy^2 x^3 10$.
- $f(x, y) = x^2 + y^2 3$.
- $f(x, y, z) = x^n + y^n z^n$

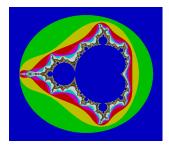
- yes: f(5, 3, 0) = 0
- 🗕 no
- yes if n = 2, x = 3, y = 4, z = 5
- no if n ≥ 3 and x, y, z > 0.
 (Fermat's Last Theorem)

at all the function of the collection of the co

Andrew Wiles, 1995

More Undecidable Problems

Optimal data compression. Find the shortest program to produce a given string or picture.



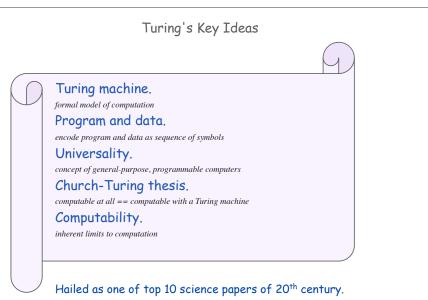
Mandelbrot set (40 lines of code)

Virus identification. Is this program a virus? Private Sub AutoOpen() On Error Resume Next If System.PrivateProfileString("", CURRENT_USER\Software\Microsoft\Office\9.0\Word\Security", "Level") <> "" Then CommandBars("Macro").Controls("Security...").Enabled = False For oo = 1 To AddyBook.AddressEntries.Count

For oo = 1 To AddyBook.AddressEntries.Count
Peep = AddyBook.AddressEntries(x)
BreakUmOffASlice.Recipients.Add Peep
x = x + 1
If x > 50 Then oo = AddyBook.AddressEntries.Count
Next oo
Can write programs in MS Word.
This statement disables security
Can write programs in MS Word.
This statement disables security

More Undecidable Problems

- ... BreakUmOffASlice.Subject = "Important Message From " & Application.UserName BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)" . . .
 - Melissa virus March 28, 1999



Reference: On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing. In Proceedings of the London Mathematical Society, ser. 2, vol. 42 (1936-7), pp.230-265.

61

Alan Turing 1912-1954