
COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

More Sequential Circuits, plus Architecture

QS

R

2

Sequential vs. Combinational Circuits

Combinational circuits.
■  Output determined solely by inputs.
■  Can draw solely with left-to-right

signal paths.

Sequential circuits.
■  Output determined by inputs
 AND previous outputs.
■  Feedback loop.

QS

R

3

SR Flip-Flop

SR Flip-Flop.
■  S = 1, R = 0 (set) ⇒ “Flips” bit on.
■  S = 0, R = 1 (reset) ⇒ “Flops” bit off.
■  S = R = 0 ⇒ Status quo.
■  S = R = 1 ⇒ Not allowed.

Interface

Implementation

S

R

SR flip flop SR flip flop

Q

Q
S

R

4

Clocked SR Flip-Flop

Clocked SR Flip-Flop.
■  Same as SR flip-flop except S and R only active when clock is 1.

Interface Implementation

Cl

R

S

Q

S

R

SR flip flop

Q Cl

R

S

Q Cl
R

S

Clocked
SR flip flop

5

Clocked D Flip-Flop

Clocked D Flip-Flop.
■  Output follows D input while clock is 1.
■  Output is remembered while clock is 0.

Interface Implementation

Cl

D

Q

D

Cl
Q Cl

R

S

Clocked
SR flip flop

Q

Cl

D

Clocked
D flip flop

6

Memory Overview

Computers and TOY have many types of memory.
■  Program counter.
■  Registers.
■  Main memory.

We implement each bit of memory with a clocked D flip-flop.

Need mechanism to organize and manipulate GROUPS of related bits.
■  TOY has 16-bit words.
■  Memory hierarchy makes architecture manageable.

7

Bus

16-bit bus.
■  Bundle of 16 wires.
■  Memory transfer,

register transfer.

8-bit bus.
■  Bundle of 8 wires.
■  TOY memory address.

4-bit bus.
■  Bundle of 4 wires.
■  TOY register address.

16

8

4

8

Stand-Alone Register

k-bit register.
■  Stores k bits.
■  Register contents always available on output.
■  If write enable is asserted, k input

bits get copied into register.

Ex: Program Counter, 16 TOY registers,
256 TOY memory locations.

write
enable

read
data

reg 16 16

16-bit Register Interface

x15
Cl

D

16-bit Register Implementation

x1
Cl

D

x0
Cl

D

Write

y1

y0

Q y15

Q

Q

write
data

9

Register File Interface

n-by-k register file.
■  Bank of n registers; each stores k bits.
■  Read and write information to one of n registers.

–  log2 n address inputs specifies which one
■  Addressed bits always appear on output.
■  If write enable and clock are asserted, k input bits are copied into

addressed register.

Examples.
■  TOY registers: n = 16, k = 16.
■  TOY main memory: n = 256, k = 16.
■  Real computer: n = 256 million, k = 32.

–  1 GB memory
–  (1 Byte = 8 bits)

write
data

read
data

16 16

256 x 16 Register File Interface

RegFile

W

8
addr

10

Implementation example: TOY main memory.
■  Use 256 16-bit registers.
■  Multiplexer and decoder are combinational circuits.

Register File Implementation

W addr Cl write
data

read
data

reg 0

reg 1

reg 255

 Mux

0

1

255

8-bit
Decoder

select

0

1

255

addr

8

8
16

16

16

11

Implementation example: TOY main memory.
■  Use 256 16-bit registers.
■  Multiplexer is combinational circuit.

Register File Implementation: Reading

read
data

reg 0

reg 1

reg 255

 Mux

0

1

255

addr

8

16

16

12

2n-to-1 Multiplexer

2n-to-1 multiplexer.
■  n select inputs, 2n data

inputs, 1 output.
■  Copies "selected"

data input bit to output.

8-to-1 Mux Implementation

s0 s1 s2

x0

x1

x2

x3

x4

x5

x6

x7

y

y

8-to-1 Mux Interface

x7

x6

x5

x4

x3

x2

x1

x0

111

110

101

100

011

010

001

000

8 to 1
MUX

n = 8 for main memory

s0 s1 s2

13

2n-to-1 Multiplexer

2n-to-1 multiplexer.
■  n select inputs, 2n data

inputs, 1 output.
■  Copies "selected"

data input bit to output.

8-to-1 Mux Implementation

1 1 0

0

0

0

1

0

1

1

1

1

1

8-to-1 Mux Interface

1

1

1

0

1

0

0

0

111

110

101

100

011

010

001

000

8 to 1
MUX

1 1 0

n = 8 for main memory

14

2n-to-1 Multiplexer, Width = k

2n-to-1 multiplexer, width = k.
■  Select from one of 2n k-bit buses.
■  Copies k "selected" data bits to output.
■  Layering k 2n-to-1 multiplexers.

z

x x

x y

 4-wide
 2-to-1
 MUX

4

4

4

 Interface for 2-to-1 MUX, width = 4

x0

0

0
0

0

 Implementation for 2-to-1 MUX, width = 4

z0

y0

x1

z1

y1

x2

z2

y2

x3

z3

y3

 2-to-1
 MUX

4 copies of
same signal

n = 8, k = 16 for main memory

15

Implementation example: TOY main memory.
■  Use 256 16-bit registers.
■  Decoder is combinational circuit.

Register File Implementation: Writing

W addr Cl write
data

reg 0

reg 1

reg 255

8-bit
Decoder

select

0

1

255

8
16

16

Implementation example: TOY main memory.
■  Use 256 16-bit registers.
■  Decoder is combinational circuit.

Register File Implementation: Writing

W addr Cl write
data

reg 0

reg 1

reg 255

8-bit
Decoder

select

0

1

255

8
16

WHEN to write
WHAT
to
write

WHERE
to write

17

n-Bit Decoder

n-bit decoder.
■  n address inputs, 2n data outputs.
■  Addressed output bit is 1; others are 0.

3-Bit Decoder Implementation

x5

x6

x7

x0

x1

x2

x3

x4

s0 s1 s2

3-Bit
Decoder

3-Bit Decoder Interface

x1

x2

x3

x4

x5

x6

x7

s0 s1 s2

select
111

110

101

100

011

010

001

x0 000

n = 8 for main memory

18

n-Bit Decoder

n-bit decoder.
■  n address inputs, 2n data outputs.
■  Addressed output bit is 1; others are 0.

3-Bit Decoder Implementation

0

1

0

0

0

0

0

0 1 1

3-Bit
Decoder

3-Bit Decoder Interface

0

0

0

0

0

0

1

0

0 1 1

select
111

110

101

100

011

010

001

000
0

n = 8 for main memory

19

Implementation example: TOY main memory.
■  Use 256 16-bit registers.
■  Multiplexer and decoder are combinational circuits.

Register File Implementation: Reading and Writing

W addr Cl write
data

read
data

reg 0

reg 1

reg 255

 Mux

0

1

255

8-bit
Decoder

select

0

1

255

addr

8

8
16

16

16

Register File Variations

Read address can be different from Write address
  Not in Main Memory (one address from instruction or PC)
  But definitely in TOY registers (read from and write to different

registers)

Can have multiple “ports”
  TOY registers supply TWO values per instruction
  How? Just get another set of 16-to-1, 16-wide multiplexors

(and one more 4-bit address)

Actual technologies for register and memory are different.
  Register files are relatively small and very fast (expensive per bit)
  Memories are relatively large and pretty fast (very cheap per bit)
  Drastic evolution of technology over time (Moore’s Law)

20

COS126: General Computer Science • http://www.cs.Princeton.EDU/~cos126

6.3: TOY Machine Architecture

> 0

= 0

1

Memory

W Data

R
Data

Addr

W

2

Registers

W Data

W Addr

A Addr

B Addr

A Data

B Data

W

80

PC

+

Cond
Eval

IR

t

s

d

op

pc for jal

store data

addr

pc + 1

pc for branch,
jump

result of arithmetic, logic, or
addr for load addr

addr for loads,
stores

5

A
L
U

load

8
0

16 8

16

8

22

The TOY Machine

TOY machine.
■  256 16-bit words of memory.
■  16 16-bit registers.
■  1 8-bit program counter.
■  16 instructions types.

What we've done.
■  Written programs for the TOY machine.
■  Software implementation of fetch-execute cycle.

–  TOY simulator.

Our goal today.
■  Hardware implementation of fetch-execute cycle.

–  TOY computer.

Fetch

23

Designing a Processor

How to build a microprocessor?

■  Develop instruction set architecture (ISA).
–  16-bit words, 16 TOY machine instructions

■  Determine major components.
–  ALU, memory, registers, program counter

■  Determine datapath requirements.
–  "flow" of bits

■  Establish clocking methodology.
–  2-cycle design: fetch, execute

■  Analyze how to implement each instruction.
–  determine settings of control signals

24

Instruction Set Architecture

Instruction set architecture (ISA).
■  16-bit words, 256 words of memory, 16 registers.
■  Determine set of primitive instructions.

–  too narrow ⇒ cumbersome to program
–  too broad ⇒ cumbersome to build hardware

■  TOY machine: 16 instructions.

0: halt

Instructions

1: add

2: subtract

3: and

4: xor

5: shift left

6: shift right

7: load address

8: load

9: store

A: load indirect

B: store indirect

C: branch zero

D: branch positive

E: jump register

F: jump and link

Instructions

25

Designing a Processor

How to build a microprocessor?

■  Develop instruction set architecture (ISA).
–  16-bit words, 16 TOY machine instructions

■  Determine major components.
–  ALU, memory, registers, program counter

■  Determine datapath requirements.
–  "flow" of bits

■  Establish clocking methodology.
–  2-cycle design: fetch, execute

■  Analyze how to implement each instruction.
–  determine settings of control signals

26

Arithmetic Logic Unit

TOY ALU.
■  Big combinational circuit.
■  16-bit buses for inputs and output.
■  Add, subtract, and, xor, shift left, shift right, copy input 2.

ALU select

16

16

16

Input 1

Input 2

ALU

subtract shift
direction

3

op 1
+, - 0
& 0
^ 1

<<, >> 1
input 2 0

2
0
0
0
0
1

0
0
1
0
1
0

technical hack

27

Arithmetic Logic Unit: Implementation

16
Input 1

16
Input 2

16

subtract

carry in

ALU control

&

~

shift direction

3

<<
>>

 MUX

op 1
+, - 0
& 0
^ 1

<<, >> 1

0
0
1
0
1

input 2 0 0

2
0
0
0
0
1

000

001

010

011

100

+

^ ̂

28

Main Memory

TOY main memory: 256 x 16-bit register file.

16

Cl Write Address

8

Read
Data

16

Write
Data

07
06
05

03
02
01

04

00

0F
0E
0D

0B
0A
09

0C

08
17
16
15

13
12
11

14

10

1F
1E
1D

1B
1A
19

1C

18
27
26
25

23
22
21

24

20

2F
2E
2D

2B
2A
29

2C

28
37
36
35

33
32
31

34

30

3F
3E
3D

3B
3A
39

3C

38
47
46
45

43
42
41

44

40

4F
4E
4D

4B
4A
49

4C

48
57
56
55

53
52
51

54

50

5F
5E
5D

5B
5A
59

5C

58
67
66
65

63
62
61

64

60

6F
6E
6D

6B
6A
69

6C

68
77
76
75

73
72
71

74

70

7F
7E
7D

7B
7A
79

7C

78
87
86
85

83
82
81

84

80

8F
8E
8D

8B
8A
89

8C

88
97
96
95

93
92
91

94

90

9F
9E
9D

9B
9A
99

9C

98
A7
A6
A5

A3
A2
A1

A4

A0

AF
AE
AD

AB
AA
A9

AC

A8
B7
B6
B5

B3
B2
B1

B4

B0

BF
BE
BD

BB
BA
B9

BC

B8
C7
C6
C5

C3
C2
C1

C4

C0

CF
CE
CD

CB
CA
C9

CC

C8
D7
D6
D5

D3
D2
D1

D4

D0

DF
DE
DD

DB
DA
D9

DC

D8
E7
E6
E5

E3
E2
E1

E4

E0

EF
EE
ED

EB
EA
E9

EC

E8
F7
F6
F5

F3
F2
F1

F4

F0

FF
FE
FD

FB
FA
F9

FC

F8

29

Registers

TOY registers: fancy 16 x 16-bit register file.
■  Want to be able to read two registers, and write to a third in the

same instructions: R1 ← R2 + R3.
■  3 address inputs, 1 data input, 2 data outputs.
■  Add decoders and muxes for additional ports.

Cl Write

 Write Data
16

A Data

16

B Data

16
Write Address

4

A Address
4

B Address
4

R7

R6
R5

R3

R2
R1

R4

R0

RF

RE
RD

RB

RA
R9

RC

R8

30

Designing a Processor

How to build a microprocessor?

■  Develop instruction set architecture (ISA).
–  16-bit words, 16 TOY machine instructions

■  Determine major components.
–  ALU, memory, registers, program counter

■  Determine datapath requirements.
–  "flow" of bits

■  Establish clocking methodology.
–  2-cycle design: fetch, execute

■  Analyze how to implement each instruction.
–  determine settings of control signals

31

Datapath and Control

Datapath.
■  Layout and interconnection of components.
■  Must accommodate all instruction types.

Control.
■  Choreographs the "flow" of information on the datapath.
■  Depending on instruction, different control wires are turned on.

 MUX

8

8

8

control wire

Result of jump
or branch

Result of adding 1 to
old PC

datapath wires PC 5E

11

1

5E 1

0

32

Datapath and Control

Datapath.
■  Layout and interconnection of components.
■  Must accommodate all instruction types.

Control.
■  Choreographs the "flow" of information on the datapath.
■  Depending on instruction, different control wires are turned on.

 MUX

8

8

8
Result of jump
or branch

Result of adding 1 to
old PC

PC 5E

11

0

11 1

0

control wire

datapath wires

34 35

Real Microprocessor Chip (Intel Nehalem)

36

The TOY Datapath

> 0

= 0

1

Memory

W Data

R Data

Addr

W

2

Registers

W Data

W Addr

A Addr

B Addr

A Data

B Data

W

80

PC

+

Cond
Eval

IR

t

s

d

op

pc for jal

store data

addr

pc + 1

pc for branch,
jump

result of arithmetic, logic,
or addr for load addr

addr for loads,
stores

5

A
L
U

load

8
0

16 8

16

8

37

20

The TOY Datapath: Add

Before fetch:
pc = 20, mem[20] = 1234

21

After fetch:
pc = 21
IR = 1234: R[2] ← R[3] + R[4]

1

PC

+

21

1234

21

20
20

Memory

W Data

R Data

Addr

W

???? 21 1234

2

3

4

1

IR

t

s

d

op

38

The TOY Datapath: Add

008C

008C

Before execute:
pc = 21
IR = 1234: R[2] ← R[3] + R[4]
R[3] = 0028, R[4] = 0064

After execute:
pc = 21
R[2] = 008C

008C

0028

0064

> 0

= 0

1

2

PC

Cond
Eval

5

A
L
U

IR

t

s

d

op

Registers

W Data

W Addr

A Addr

B Addr

A Data

B Data

W

+

Memory

W Data

R Data

Addr

W

21 1234

2

3

4

1

39

> 0

= 0

1

Do Try This At Home

Memory

W Data

R Data

Addr

W

2

Registers

W Data

W Addr

A Addr

B Addr

A Data

B Data

W

80

PC

+

Cond
Eval

IR

t

s

d

op

pc for jal

store data

addr

pc + 1

pc for branch,
jump

result of arithmetic, logic,
or addr for load addr

addr for loads,
stores

5

A
L
U

load

8
0

16 8

16

8

Trace the flow of some other instructions through the datapath picture.

40

Designing a Processor

How to build a microprocessor?

■  Develop instruction set architecture (ISA).
–  16-bit words, 16 TOY machine instructions

■  Determine major components.
–  ALU, memory, registers, program counter

■  Determine datapath requirements.
–  "flow" of bits

■  Establish clocking methodology.
–  2-cycle design: fetch, execute

■  Analyze how to implement each instruction.
–  determine settings of control signals

41

Clocking Methodology

Two cycle design (fetch and execute).
■  Use 1-bit counter to distinguish between 2 cycles.
■  Use two cycles since fetch and execute phases each access memory

and alter program counter.

Execute

Fetch

Clock

Execute

Fetch

Clock
Execute

Fetch
Q

Cl

1-bit
counter

42

Clocking Methodology

4 distinguishable epochs.
■  During fetch phase.
■  At very end of fetch phase.
■  During execute phase.
■  At very end of execute phase.

Ex: can only write at very end of execute phase.
■  R1 ← R1 + R1

Clock

Execute

Fetch

execute
clock

Registers

W Data

W Addr

A Addr

B Addr

A Data
B Data

W

time for
one instruction

43

Designing a Processor

How to build a microprocessor?

■  Develop instruction set architecture (ISA).
–  16-bit words, 16 TOY machine instructions

■  Determine major components.
–  ALU, memory, registers, program counter

■  Determine datapath requirements.
–  "flow" of bits

■  Establish clocking methodology.
–  2-cycle design: fetch, execute

■  Analyze how to implement each instruction.
–  determine settings of control signals

44

Control

Control: controls components, enables connections.
■  Input: opcode, clock, conditional evaluation. (green)
■  Output: control wires. (orange)

Control

Execute
Fetch

> 0

1

2

+

5

4

Registers

W Data

W Addr

A Addr

B Addr

A Data

B Data

W

Memory

W Data

R Data

Addr

W

PC

A
L
U

IR

t

s

d

op

1-bit
counter

= 0 Cond
Eval

45

Control: controls components, enables connections.
■  Input: opcode, clock, conditional evaluation. (green)
■  Output: control wires. (orange)

Control

Clock

Execute
Fetch

> 0

1

2

+

5

4

Registers

W Data

W Addr

A Addr

B Addr

A Data

B Data

W

Memory

W Data

R Data

Addr

W

Opcode

PC

A
L
U

Cond
Eval

IR

t

s

d

op

1-bit
counter

= 0

Control

46

Implementation of Control

WRITE MEM

READ REG A MUX

opcode

execute
fetch

cond positive

cond zero

ALU MUX

ALU SELECT 0

clock

4-BIT DECODER jum
p + link

jum
p reg

branch pos
branch zero

store indirect
load indirect

store
load

load addr
shift right

shift left
xor

and
subtract

add
halt

WRITE IR

plus a
few more

Inputs

47

Implementation of Control: Store

WRITE MEM

READ REG A MUX

opcode

execute
fetch

cond positive

cond zero

ALU MUX

ALU SELECT 0

clock

4-BIT DECODER jum
p + link

jum
p reg

branch pos
branch zero

store indirect
load indirect

store
load

load addr
shift right

shift left
xor

and
subtract

add
halt

WRITE IR

plus a
few more

Inputs
1
0
0
1

48

Control: Execute Phase of Store

Clock

Execute
Fetch

1

+

4

Registers

W Data

W Addr

A Addr

B Addr

A Data

B Data

W

Memory

W Data

R Data

Addr

W

Opcode

PC

A
L
U

Cond
Eval

IR

t

s

d

op

1-bit
counter Control

49

Stand-Alone Registers

Instruction Register

fetch clock

1
0 pc + 1

execute

jump
branch

Program Counter

clock

bzero = 0 bpos > 0
jump
link

jump
reg

fetch

PC

8 8
16 16

IR

50

Pipelining

Pipelining.
■  At any instant, processor is either fetching instructions or

executing them (and so half of circuitry is idle).
■  Why not fetch next instruction while current instruction is

executing?
–  Analogy: washer / dryer.

Issues.
■  Jump and branch instructions change PC.

–  "Prefetch" next instruction.
■  Fetch and execute cycles may need to access same memory.

–  Solution: use two memory “caches”.

Result.
■  Better utilization of hardware.
■  Can double speed of processor.

51

Goodbye, TOY

16

> 0

= 0

1

Memory

W Data

R Data

Addr

W

2

Registers

W Data

W Addr

A Addr

B Addr

A Data

B Data

W

80

PC

+

Cond
Eval

IR

t

s

d

op

pc for jal

store data

addr

pc + 1

pc for branch,
jump

result of arithmetic, logic,
or addr for load addr

addr for loads,
stores

5

A
L
U

load

8
0

8

16

8

The final secret

52

A"
OUT"

B"

A"
OUT"

B"
A" OUT"

All three of our logic primitives can be made
using a single* type of electronic primitive: the transistor !

*not counting the passive resistors

