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More Sequential Circuits, plus Architecture 
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Sequential vs. Combinational Circuits 

Combinational circuits. 
■  Output determined solely by inputs. 
■  Can draw solely with left-to-right 

signal paths. 

Sequential circuits. 
■  Output determined by inputs 
    AND previous outputs. 
■  Feedback loop. 
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SR Flip-Flop 

SR Flip-Flop. 
■  S = 1, R = 0 (set)  ⇒   “Flips” bit on. 
■  S = 0, R = 1 (reset)  ⇒   “Flops” bit off. 
■  S = R = 0   ⇒   Status quo. 
■  S = R = 1   ⇒   Not allowed.  
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Clocked SR Flip-Flop 

Clocked SR Flip-Flop. 
■  Same as SR flip-flop except S and R only active when clock is 1. 

Interface Implementation 

Cl 

R 

S 

Q 

S 

R 

SR flip flop 

Q Cl 

R 

S

Q Cl 
R 

S 

Clocked 
SR flip flop 



5 

Clocked D Flip-Flop 

Clocked D Flip-Flop. 
■  Output follows D input while clock is 1. 
■  Output is remembered while clock is 0. 

Interface Implementation 
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Memory Overview 

Computers and TOY have many types of memory. 
■  Program counter. 
■  Registers. 
■  Main memory. 

We implement each bit of memory with a clocked D flip-flop. 

Need mechanism to organize and manipulate GROUPS of related bits.  
■  TOY has 16-bit words. 
■  Memory hierarchy makes architecture manageable. 
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Bus 

16-bit bus. 
■  Bundle of 16 wires. 
■  Memory transfer, 

register transfer. 

8-bit bus. 
■  Bundle of 8 wires. 
■  TOY memory address. 

4-bit bus. 
■  Bundle of 4 wires. 
■  TOY register address. 
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Stand-Alone Register 

k-bit register. 
■  Stores k bits. 
■  Register contents always available on output. 
■  If write enable is asserted, k input 

bits get copied into register. 

Ex:  Program Counter, 16 TOY registers, 
256 TOY memory locations. 
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Register File Interface 

n-by-k register file. 
■  Bank of n registers; each stores k bits. 
■  Read and write information to one of n registers. 

–  log2 n address inputs specifies which one 
■  Addressed bits always appear on output. 
■  If write enable and clock are asserted, k input bits are copied into 

addressed register. 

Examples. 
■  TOY registers:  n = 16, k = 16. 
■  TOY main memory:  n = 256, k = 16. 
■  Real computer: n = 256 million, k = 32. 

–  1 GB memory 
–  (1 Byte = 8 bits) 
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Implementation example:  TOY main memory. 
■  Use 256 16-bit registers. 
■  Multiplexer and decoder are combinational circuits. 

Register File Implementation 
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Implementation example:  TOY main memory. 
■  Use 256 16-bit registers. 
■  Multiplexer is combinational circuit. 

Register File Implementation: Reading 
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2n-to-1 Multiplexer 

2n-to-1 multiplexer. 
■  n select inputs, 2n data 

inputs, 1 output. 
■  Copies "selected" 

data input bit to output. 

8-to-1 Mux Implementation 
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2n-to-1 Multiplexer 

2n-to-1 multiplexer. 
■  n select inputs, 2n data 

inputs, 1 output. 
■  Copies "selected" 

data input bit to output. 

8-to-1 Mux Implementation 
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2n-to-1 Multiplexer, Width = k 

2n-to-1 multiplexer, width = k.  
■  Select from one of 2n k-bit buses. 
■  Copies k "selected" data bits to output. 
■  Layering k 2n-to-1 multiplexers. 
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Implementation example:  TOY main memory. 
■  Use 256 16-bit registers. 
■  Decoder is combinational circuit. 

Register File Implementation: Writing 
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Implementation example:  TOY main memory. 
■  Use 256 16-bit registers. 
■  Decoder is combinational circuit. 

Register File Implementation: Writing 
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n-Bit Decoder 

n-bit decoder. 
■  n address inputs, 2n data outputs. 
■  Addressed output bit is 1; others are 0. 

3-Bit Decoder Implementation 
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n-Bit Decoder 

n-bit decoder. 
■  n address inputs, 2n data outputs. 
■  Addressed output bit is 1; others are 0. 

3-Bit Decoder Implementation 
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Implementation example:  TOY main memory. 
■  Use 256 16-bit registers. 
■  Multiplexer and decoder are combinational circuits. 

Register File Implementation: Reading and Writing 
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Register File Variations 

Read address can be different from Write address 
  Not in Main Memory (one address from instruction or PC) 
  But definitely in TOY registers (read from and write to different 

registers) 

Can have multiple “ports” 
  TOY registers supply TWO values per instruction 
  How?  Just get another set of 16-to-1, 16-wide multiplexors       

(and one more 4-bit address) 

Actual technologies for register and memory are different. 
  Register files are relatively small and very fast (expensive per bit) 
  Memories are relatively large and pretty fast (very cheap per bit) 
  Drastic evolution of technology over time (Moore’s Law) 
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6.3:  TOY Machine Architecture 
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The TOY Machine 

TOY machine. 
■  256 16-bit words of memory. 
■  16 16-bit registers. 
■  1 8-bit program counter. 
■  16 instructions types. 

What we've done. 
■  Written programs for the TOY machine. 
■  Software implementation of fetch-execute cycle. 

–  TOY simulator. 

Our goal today. 
■  Hardware implementation of fetch-execute cycle. 

–  TOY computer. 

Fetch 
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Designing a Processor 

How to build a microprocessor? 

■  Develop instruction set architecture (ISA). 
–  16-bit words, 16 TOY machine instructions 

■  Determine major components. 
–  ALU, memory, registers, program counter 

■  Determine datapath requirements. 
–  "flow" of bits 

■  Establish clocking methodology. 
–  2-cycle design: fetch, execute 

■  Analyze how to implement each instruction. 
–  determine settings of control signals 
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Instruction Set Architecture 

Instruction set architecture (ISA). 
■  16-bit words, 256 words of memory, 16 registers. 
■  Determine set of primitive instructions. 

–  too narrow     ⇒  cumbersome to program 
–  too broad     ⇒  cumbersome to build hardware 

■  TOY machine:  16 instructions. 

0: halt 

Instructions 

1: add 

2: subtract 

3: and 

4: xor 

5: shift left 

6: shift right 

7: load address 

8: load 

9: store 

A: load indirect 

B: store indirect 

C: branch zero 

D: branch positive 

E: jump register 

F: jump and link 

Instructions 



25 

Designing a Processor 

How to build a microprocessor? 

■  Develop instruction set architecture (ISA). 
–  16-bit words, 16 TOY machine instructions 

■  Determine major components. 
–  ALU, memory, registers, program counter 

■  Determine datapath requirements. 
–  "flow" of bits 

■  Establish clocking methodology. 
–  2-cycle design: fetch, execute 

■  Analyze how to implement each instruction. 
–  determine settings of control signals 
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Arithmetic Logic Unit 

TOY ALU. 
■  Big combinational circuit. 
■  16-bit buses for inputs and output. 
■  Add, subtract, and, xor, shift left, shift right, copy input 2. 
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Arithmetic Logic Unit:  Implementation 
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Main Memory 

TOY main memory:  256 x 16-bit register file. 
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Registers 

TOY registers:  fancy 16 x 16-bit register file. 
■  Want to be able to read two registers, and write to a third in the 

same instructions:  R1 ← R2 + R3. 
■  3 address inputs, 1 data input, 2 data outputs. 
■  Add decoders and muxes for additional ports. 
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Designing a Processor 

How to build a microprocessor? 

■  Develop instruction set architecture (ISA). 
–  16-bit words, 16 TOY machine instructions 

■  Determine major components. 
–  ALU, memory, registers, program counter 

■  Determine datapath requirements. 
–  "flow" of bits 

■  Establish clocking methodology. 
–  2-cycle design: fetch, execute 

■  Analyze how to implement each instruction. 
–  determine settings of control signals 
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Datapath and Control 

Datapath. 
■  Layout and interconnection of components.  
■  Must accommodate all instruction types. 

Control. 
■  Choreographs the "flow" of information on the datapath. 
■  Depending on instruction, different control wires are turned on. 
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Datapath and Control 

Datapath. 
■  Layout and interconnection of components.  
■  Must accommodate all instruction types. 

Control. 
■  Choreographs the "flow" of information on the datapath. 
■  Depending on instruction, different control wires are turned on. 
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Real Microprocessor Chip (Intel Nehalem) 
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The TOY Datapath 
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The TOY Datapath:  Add 

Before fetch: 
pc = 20, mem[20] = 1234 
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After fetch: 
pc = 21 
IR = 1234: R[2] ← R[3] + R[4] 
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The TOY Datapath:  Add 

008C 
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Do Try This At Home 
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Trace the flow of some other instructions through the datapath picture. 
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Designing a Processor 

How to build a microprocessor? 

■  Develop instruction set architecture (ISA). 
–  16-bit words, 16 TOY machine instructions 

■  Determine major components. 
–  ALU, memory, registers, program counter 

■  Determine datapath requirements. 
–  "flow" of bits 

■  Establish clocking methodology. 
–  2-cycle design: fetch, execute 

■  Analyze how to implement each instruction. 
–  determine settings of control signals 
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Clocking Methodology 

Two cycle design (fetch and execute). 
■  Use 1-bit counter to distinguish between 2 cycles. 
■  Use two cycles since fetch and execute phases each access memory 

and alter program counter. 
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Clocking Methodology 

4 distinguishable epochs. 
■  During fetch phase. 
■  At very end of fetch phase.  
■  During execute phase. 
■  At very end of execute phase.  

Ex:  can only write at very end of execute phase. 
■  R1  ←  R1 + R1 
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Designing a Processor 

How to build a microprocessor? 

■  Develop instruction set architecture (ISA). 
–  16-bit words, 16 TOY machine instructions 

■  Determine major components. 
–  ALU, memory, registers, program counter 

■  Determine datapath requirements. 
–  "flow" of bits 

■  Establish clocking methodology. 
–  2-cycle design: fetch, execute 

■  Analyze how to implement each instruction. 
–  determine settings of control signals 
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Control 

Control:  controls components, enables connections.  
■  Input:  opcode, clock, conditional evaluation.  (green) 
■  Output:  control wires.  (orange) 
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Control:  controls components, enables connections.  
■  Input:  opcode, clock, conditional evaluation.  (green) 
■  Output:  control wires.  (orange) 
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Implementation of Control 
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Implementation of Control:  Store 
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Control:  Execute Phase of Store 
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Stand-Alone Registers 
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Pipelining 

Pipelining. 
■  At any instant, processor is either fetching instructions or 

executing them (and so half of circuitry is idle). 
■  Why not fetch next instruction while current instruction is 

executing? 
–  Analogy:  washer / dryer. 

Issues. 
■  Jump and branch instructions change PC. 

–  "Prefetch" next instruction. 
■  Fetch and execute cycles may need to access same memory.  

–  Solution:  use two memory “caches”. 

Result. 
■  Better utilization of hardware. 
■  Can double speed of processor. 
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Goodbye, TOY 
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The final secret 
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A"
OUT"

B"

A"
OUT"

B"
A" OUT"

All three of our logic primitives can be made  
using a single* type of electronic primitive: the transistor ! 

*not counting the passive resistors 


