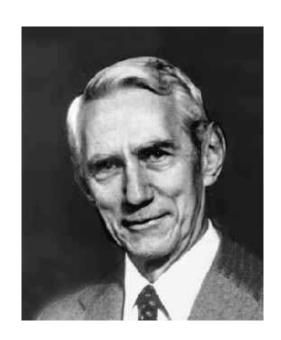
6.1 Combinational Circuits



George Boole (1815 - 1864)



Claude Shannon (1916 - 2001)

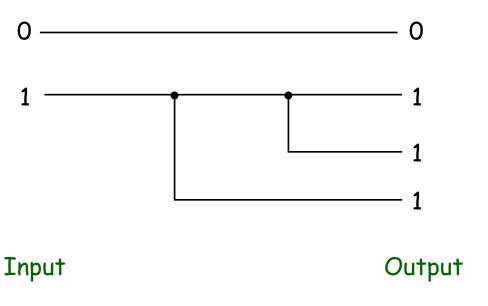
Signals and Wires

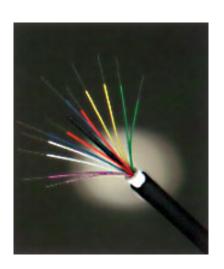
Digital signals

■ Binary (or "logical") values: 1 or 0, on or off, high or low voltage

Wires.

- Propagate logical values from place to place.
- Signals "flow" from left to right.
 - A drawing convention, sometimes violated
 - Actually: flow from producer to consumer(s) of signal

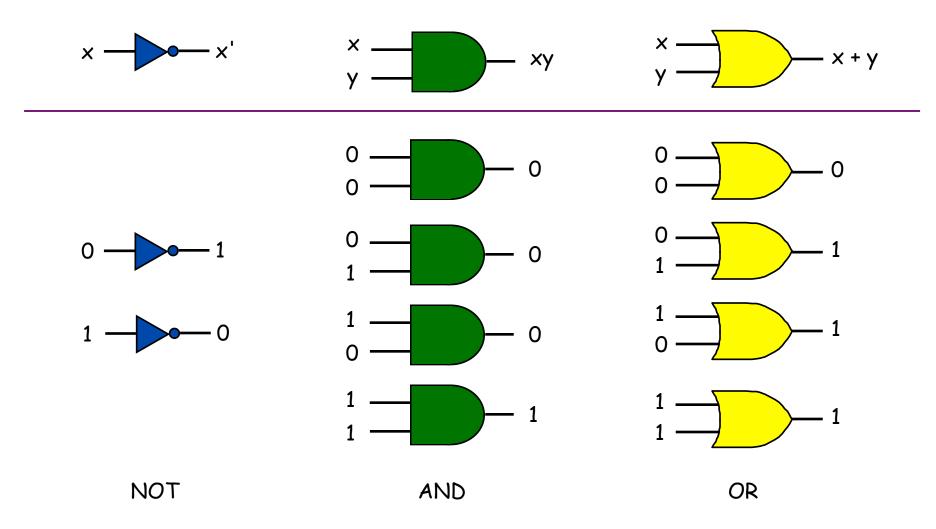




Logic Gates

Logical gates.

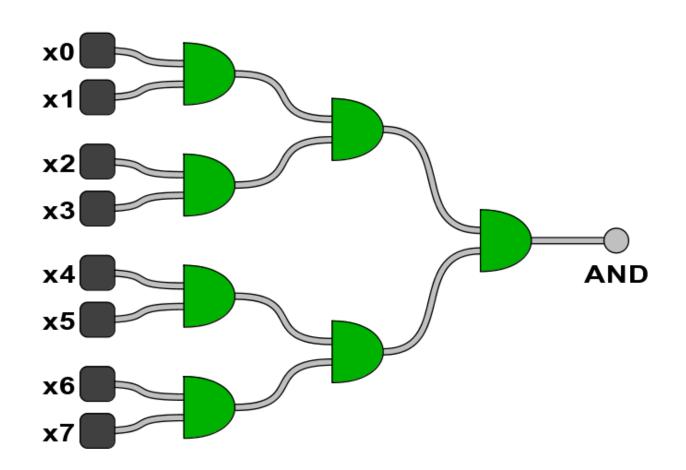
Fundamental building blocks.



Multiway AND Gates

AND($x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7$).

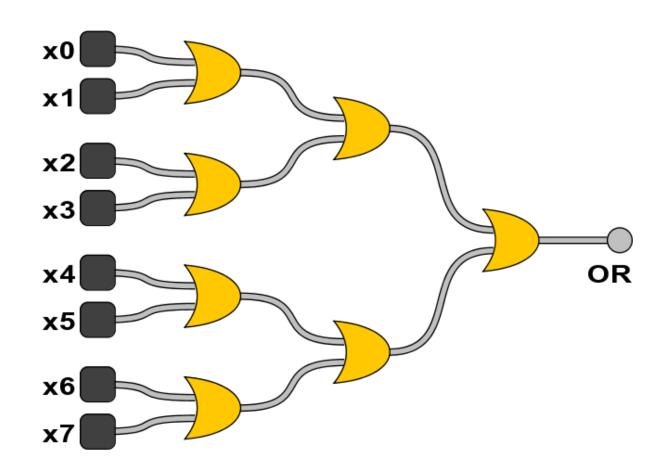
- 1 if all inputs are 1.
- 0 otherwise.



Multiway OR Gates

$OR(x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7).$

- 1 if at least one input is 1.
- 0 otherwise.



Boolean Algebra

History.

- Developed by Boole to solve mathematical logic problems (1847).
- Shannon master's thesis applied it to digital circuits (1937).

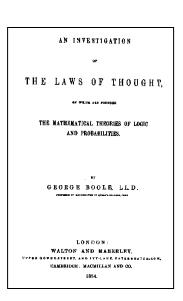
"possibly the most important, and also the most famous, master's thesis of the [20th] century" --Howard Gardner

Basics.

- Boolean variable: value is 0 or 1.
- Boolean function: function whose inputs and outputs are 0, 1.

Relationship to circuits.

- Boolean variables: signals.
- Boolean functions: circuits.

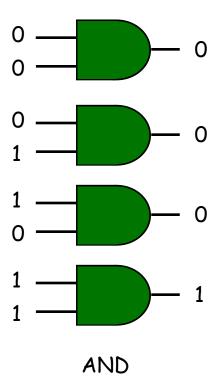


Truth Table

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- N inputs \Rightarrow 2^N rows.

AND Truth Table								
×	x							
0	0	0						
0	1	0						
1	0	0						
1	1	1						



Truth Table for Functions of 2 Variables

Truth table.

- 16 Boolean functions of 2 variables.
 - every 4-bit value represents one

	Truth Table for All Boolean Functions of 2 Variables										
X	x y ZERO AND x y XOR OR										
0	0	0	0	0	0	0	0	0	0		
0	1	0	0	0	0	1	1	1	1		
1	0	0	0	1	1	0	0	1	1		
1	1	0	1	0	1	0	1	0	1		

	Truth Table for All Boolean Functions of 2 Variables										
X	x y NOR EQ y' x' NAND ONE										
0	0	1	1	1	1	1	1	1	1		
0	1	0	0	0	0	1	1	1	1		
1	0	0	0	1	1	0	0	1	1		
1	1	0	1	0	1	0	1	0	1		

Truth Table for Functions of 3 Variables

Truth table.

- 16 Boolean functions of 2 variables.
 - every 4-bit value represents one
- 256 Boolean functions of 3 variables.
 - every 8-bit value represents one
- 2^(2^N) Boolean functions of N variables!

	Some Functions of 3 Variables									
X	У	Z	AND	OR	MAJ	ODD				
0	0	0	0	0	0	0				
0	0	1	0	1	0	1				
0	1	0	0	1	0	1				
0	1	1	0	1	1	0				
1	0	0	0	1	0	1				
1	0	1	0	1	1	0				
1	1	0	0	1	1	0				
1	1	1	1	1	1	1				

Universality of AND, OR, NOT

Any Boolean function can be expressed using AND, OR, NOT.

"Universal."

$$\blacksquare$$
 XOR(x,y) = xy' + x'y

	Expressing XOR Using AND, OR, NOT										
×	x y x' y' x'y xy' x'y + xy' XOR										
0	0	1	1	0	0	0	0				
0	1	1	0	1	0	1	1				
1	0	0	1	0	1	1	1				
1	1	0	0	0	0	0	0				

Notation	Meaning
x'	NOTx
×γ	x AND y
x + y	x OR y

Exercise. Show $\{AND, NOT\}$, $\{OR, NOT\}$, $\{NAND\}$, $\{AND, XOR\}$ are universal. Hint. Use DeMorgan's Law: (xy)' = (x' + y') and (x + y)' = (x'y')

Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT.

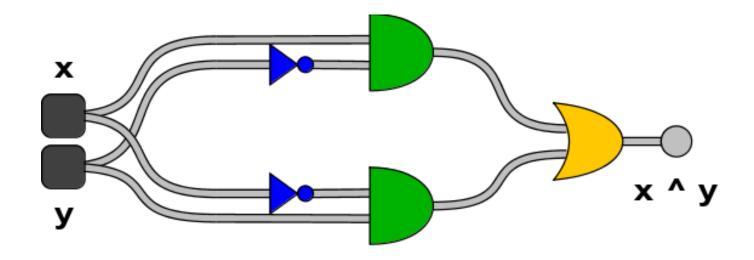
- Sum-of-products is systematic procedure.
 - form AND term for each 1 in truth table of Boolean function
 - OR terms together

	Expressing MAJ Using Sum-of-Products										
×	У	Z	MAJ	MAJ x'yz xy'z xyz' xyz x'yz + xy'z + xyz							
0	0	0	0	0	0	0	0	0			
0	0	1	0	0	0	0	0	0			
0	1	0	0	0	0	0	0	0			
0	1	1	1	1	0	0	0	1			
1	0	0	0	0	0	0	0	0			
1	0	1	1	0	1	0	0	1			
1	1	0	1	0	0	1	0	1			
1	1	1	1	0	0	0	1	1			

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.

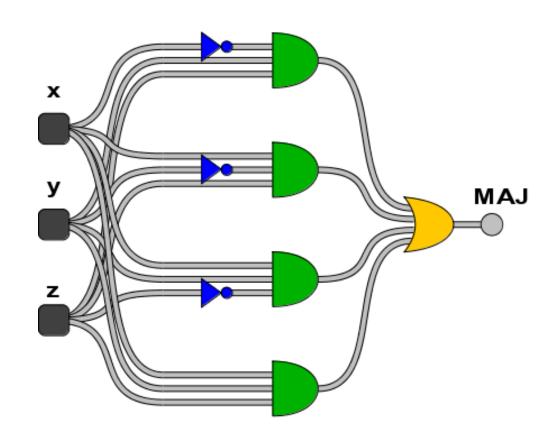
•
$$XOR(x, y) = xy' + x'y$$
.



Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.

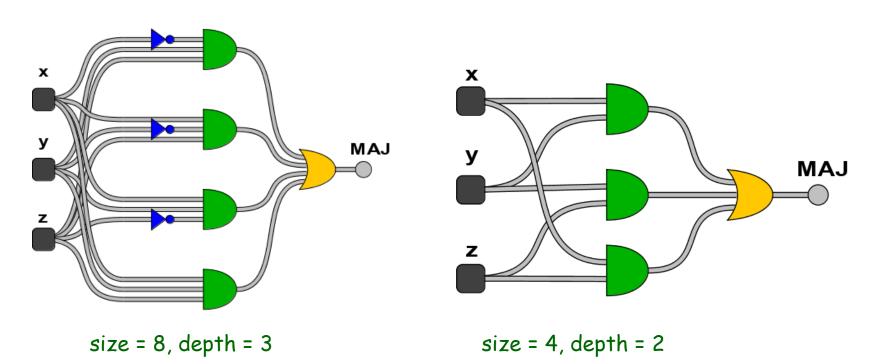
■ MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz.



Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.

- Sum-of-products not necessarily optimal in:
 - number of gates (space)
 - depth of circuit (time)
- MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz.



Expressing a Boolean Function Using AND, OR, NOT

Ingredients.

- AND gates.
- OR gates.
- NOT gates.
- Wire.

Instructions.

- Step 1: represent input and output signals with Boolean variables.
- Step 2: construct truth table to carry out computation.
- Step 3: derive (simplified) Boolean expression using sum-of products.
- Step 4: transform Boolean expression into circuit.

ODD Parity Circuit

ODD(x, y, z).

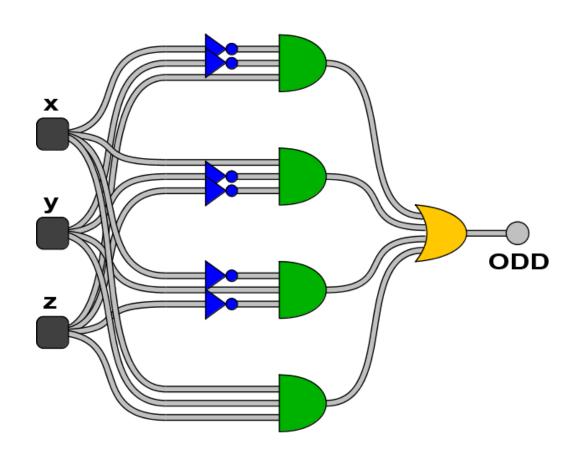
- 1 if odd number of inputs are 1.
- 0 otherwise.

	Expressing ODD Using Sum-of-Products										
X	У	Z	ODD	x'y'z	x'yz'	xy'z'	xyz	x'y'z + x'yz' + xy'z' + xyz			
0	0	0	0	0	0	0	0	0			
0	0	1	1	1	0	0	0	1			
0	1	0	1	0	1	0	0	1			
0	1	1	0	0	0	0	0	0			
1	0	0	1	0	0	1	0	1			
1	0	1	0	0	0	0	0	0			
1	1	0	0	0	0	0	0	0			
1	1	1	1	0	0	0	1	1			

ODD Parity Circuit

ODD(x, y, z).

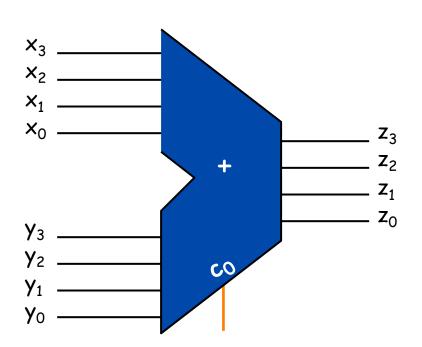
- 1 if odd number of inputs are 1.
- 0 otherwise.



Goal: x + y = z for 4-bit integers.

- We build 4-bit adder: 9 inputs, 4 outputs.
- Same idea scales to 128-bit adder.
- Key computer component.

Represent input and output in binary.



	1	1	1	0
	2	4	8	7
+	3	5	7	9
	6	0	6	6

	1	1	0	0
	0	0	1	0
+	0	1	1	1
	1	0	0	1

Goal: x + y = z for 4-bit integers.

 c_0

 z_3 z_2 z_1 z_0

Step 2. (first attempt)

- Build truth table.
- Why is this a bad idea?
 - 128-bit adder: 2^{256+1} rows > # electrons in universe!

	4-Bit Adder Truth Table											
c ₀	x ₃	x ₂	× ₁	x ₀	y ₃	y ₂	y ₁	y ₀	Z ₃	Z ₂	z_1	z ₀
0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	1	1	0	0	1	1
0	0	0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	0	1	0	1	0	1	0	1
									•	•	•	
1	1	1	1	1	1	1	1	1	1	1	1	1

28+1 = 512 rows

Goal: x + y = z for 4-bit integers.

Step 2. (do one bit at a time)

- Build truth table for carry bit.
- Build truth table for summand bit.

	c ₃	c ₂	c ₁	$c_0 = 0$
	x ₃	X ₂	x ₁	x ₀ y ₀
+	y 3	y ₂	y ₁	y ₀
	Z ₃	Z ₂	z_1	z_0

	Carry Bit				
xi	Yi	c _i	c _{i+1}		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	1		

Summand Bit				
Xi	Yi	c _i	z _i	
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Goal: x + y = z for 4-bit integers.

Step 3.

Derive (simplified) Boolean expression.

	c ₃	c ₂	c ₁	c ₀ = (C
	X ₃	X ₂	× ₁	x ₀ y ₀	
+	y ₃	y ₂	y ₁	y 0	
	z_3	Z ₂	z_1	z_0	

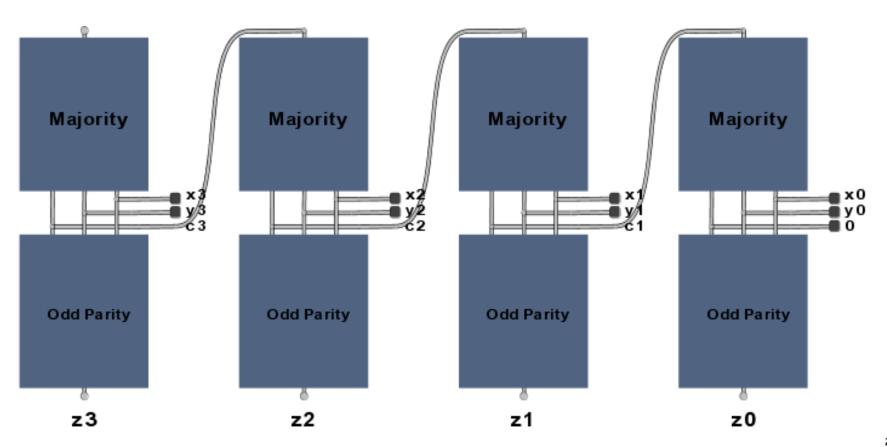
Carry Bit				
xi	Yi	c _i	c _{i+1}	MAJ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

Summand Bit				
xi	y _i	c _i	z _i	ODD
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Goal: x + y = z for 4-bit integers.

Step 4.

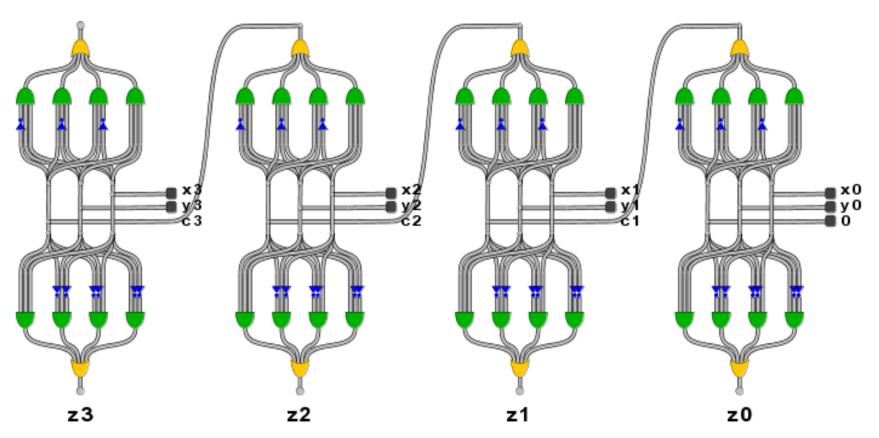
- Transform Boolean expression into circuit.
- Chain together 1-bit adders.



Goal: x + y = z for 4-bit integers.

Step 4.

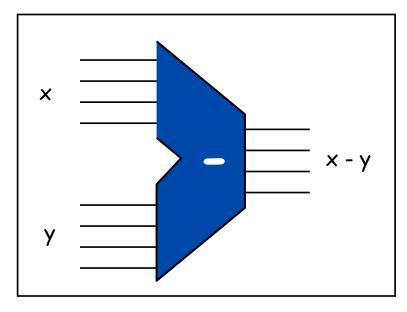
- Transform Boolean expression into circuit.
- Chain together 1-bit adders.



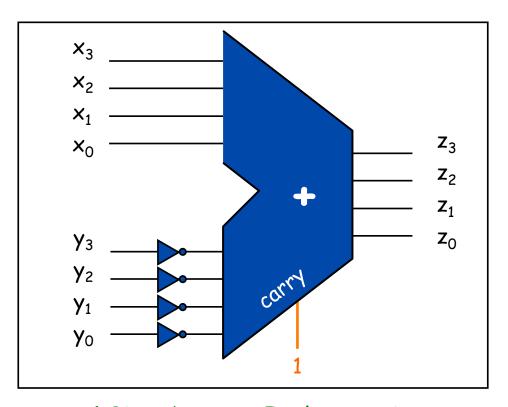
Subtractor

Subtractor circuit: z = x - y.

- One approach: new design, like adder circuit.
- Better idea: reuse adder circuit.
 - 2's complement: to negate an integer, flip bits, then add 1



4-Bit Subtractor Interface



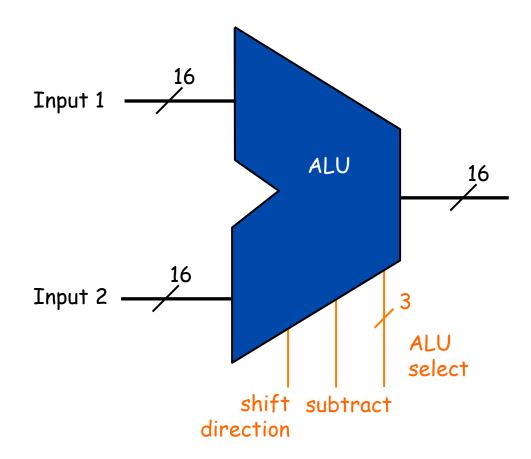
4-Bit Subtractor Implementation

TOY Arithmetic Logic Unit: Interface

ALU Interface.

- Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
- Associate 3-bit integer with 5 primary ALU operations.
 - ALU performs operations in parallel
 - control wires select which result ALU outputs

ор	2	1	0
+, -	0	0	0
&	0	0	1
^	0	1	0
<<, >>	0	1	1
input 2	1	0	0

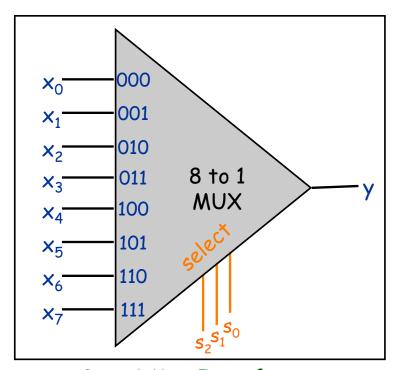


2ⁿ-to-1 Multiplexer

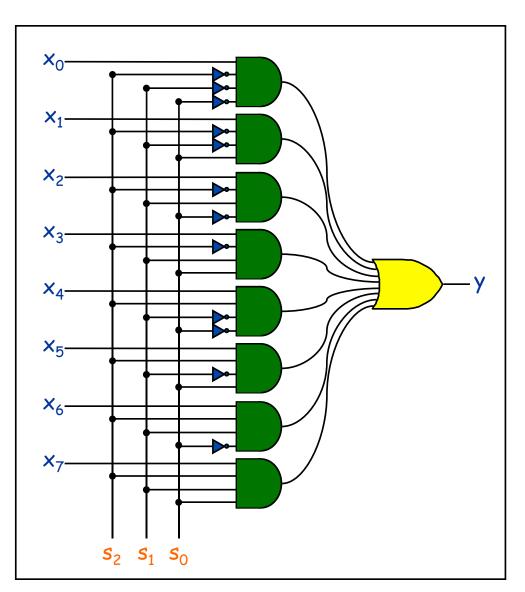
n = 8 for main memory

2ⁿ-to-1 multiplexer.

- n select inputs, 2ⁿ data inputs, 1 output.
- Copies "selected" data input bit to output.

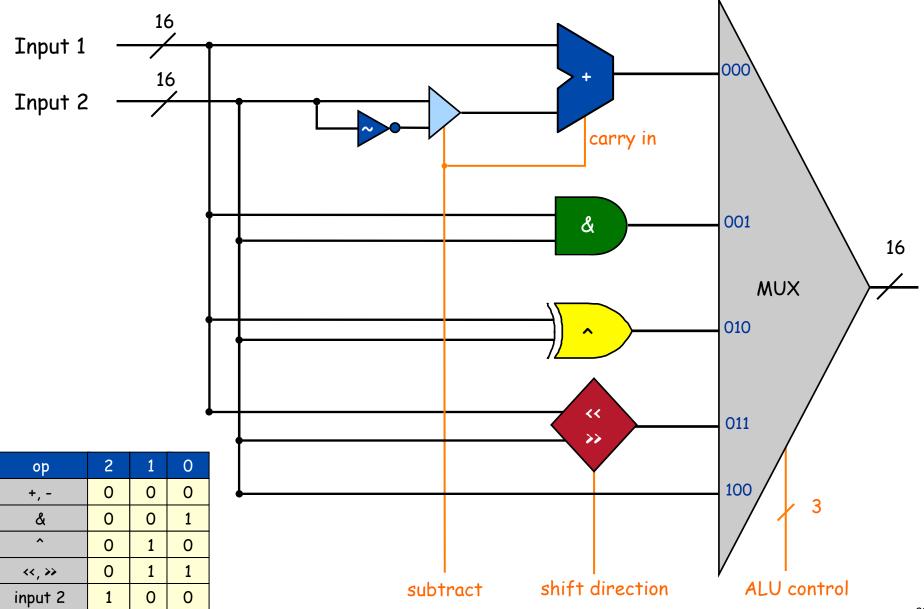


8-to-1 Mux Interface

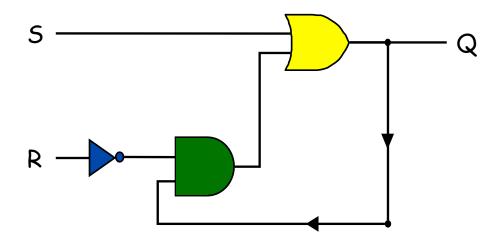


8-to-1 Mux Implementation

TOY Arithmetic Logic Unit: Implementation



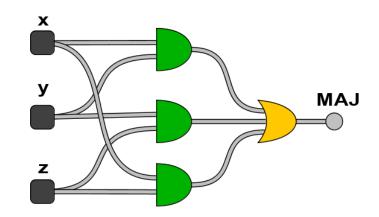
6.2: Sequential Circuits



Sequential vs. Combinational Circuits

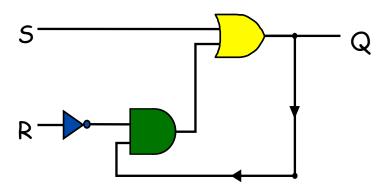
Combinational circuits.

- Output determined solely by inputs.
- Can draw solely with left-to-right signal paths.



Sequential circuits.

- Output determined by inputs AND previous outputs.
- Feedback loop.



Flip-Flop

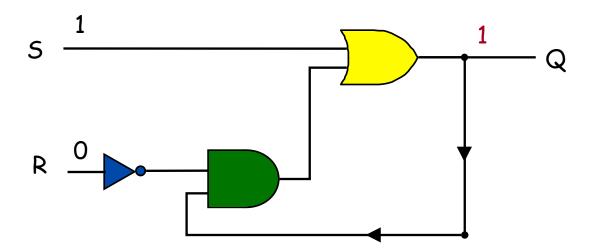
Flip-flop.

- A small and useful sequential circuit.
- Abstraction that "remembers" one bit.
- Basis of important computer components:
 - memory
 - counter

We will consider several flavors.

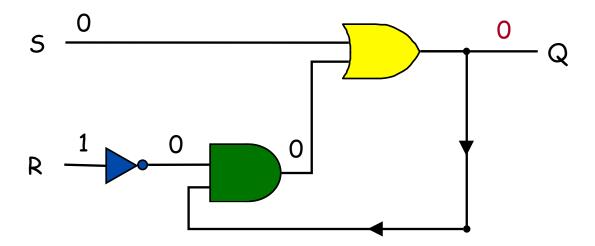
What is the value of Q if:

• S = 1 and R = 0? \Rightarrow Q is surely 1



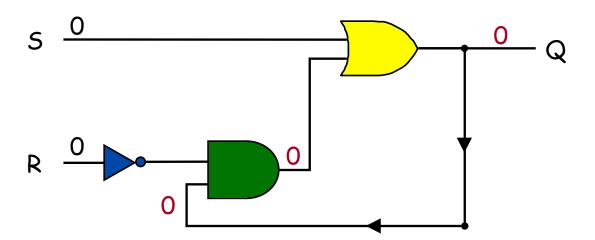
What is the value of Q if:

- S = 1 and R = 0? \Rightarrow Q is surely 1. S = 0 and R = 1? \Rightarrow Q is surely 0



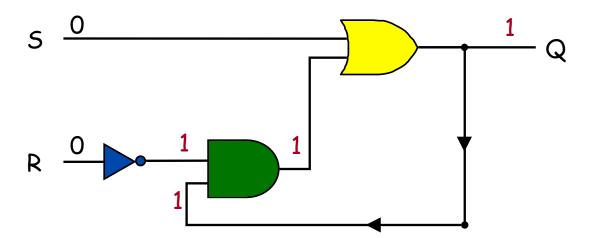
What is the value of Q if:

- S = 1 and R = 0? \Rightarrow Q is surely 1.
- S = 0 and R = 1? \Rightarrow Q is surely 0.
- S = 0 and R = 0? \Rightarrow Q is possibly 0



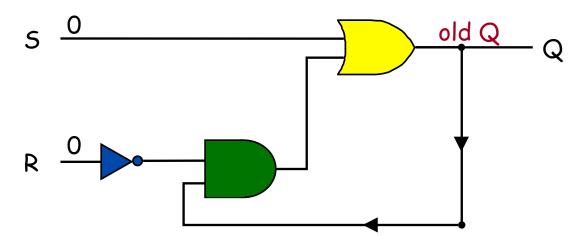
What is the value of Q if:

- S = 1 and R = 0? \Rightarrow Q is surely 1. ■ S = 0 and R = 1? \Rightarrow Q is surely 0.
- S = 0 and R = 0? \Rightarrow Q is possibly 0... or possibly 1!



What is the value of Q if:

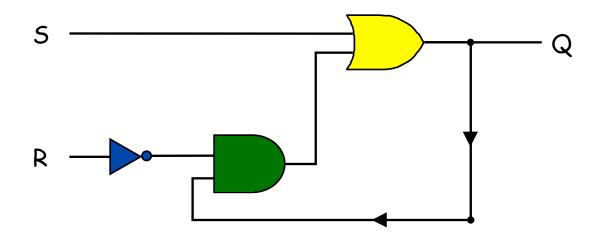
- S = 1 and R = 0? \Rightarrow Q is surely 1.
- S = 0 and R = 1? \Rightarrow Q is surely 0.
- S = 0 and R = 0? \Rightarrow Q is possibly $0 \dots$ or possibly 1.



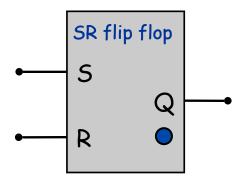
While S = R = 0, Q remembers what it was the last time S or R was 1.

SR Flip-Flop.

- S = R = 0
- S = R = 1
- S = 1, R = 0 (set) \Rightarrow "Flips" bit on.
- S = 0, R = 1 (reset) \Rightarrow "Flops" bit off.
 - ⇒ Status quo.
 - \Rightarrow Not allowed.



Implementation

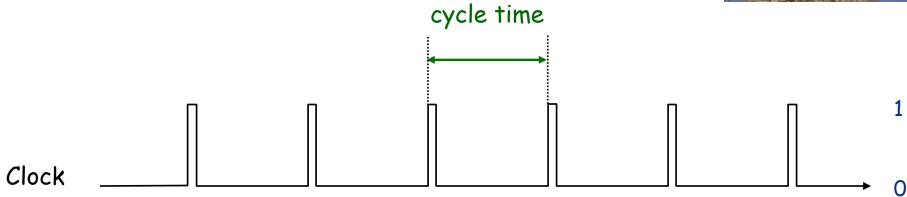


Interface

Clock

Clock.

- Fundamental abstraction.
 - regular on-off pulse
- External analog device.
- Synchronizes operations of different circuit elements.
- 1 GHz clock means 1 billion pulses per second.



How much does it Hert?

Frequency is inverse of cycle time.

- Expressed in *hertz*.
- Frequency of 1 Hz means that there is 1 cycle per second.
- Hence:
 - 1 kilohertz (kHz) means 1000 cycles/sec.
 - 1 megahertz (MHz) means 1 million cycles/sec.
 - 1 gigahertz (GHz) means 1 billion cycles/sec.
 - 1 terahertz (THz) means 1 trillion cycles/sec.

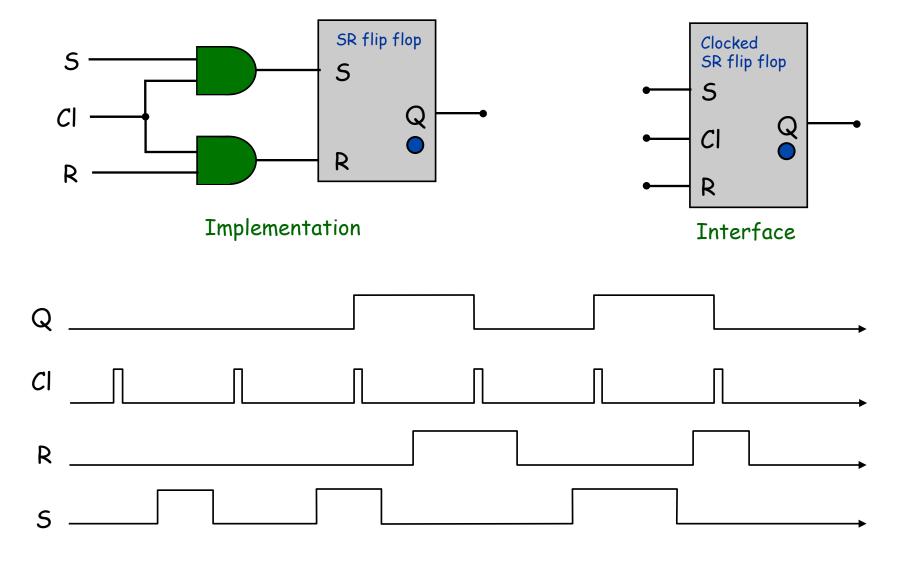
By the way, no such thing as 1 "hert"!

Heinrich Rudolf Hertz (1857-1894)

Clocked SR Flip-Flop

Clocked SR Flip-Flop.

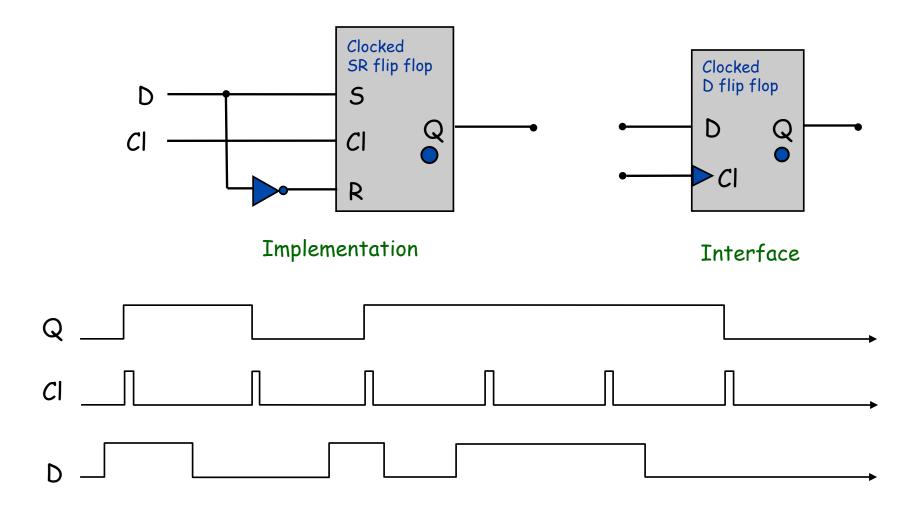
■ Same as SR flip-flop except S and R only active when clock is 1.



Clocked D Flip-Flop

Clocked D Flip-Flop.

- Output follows D input while clock is 1.
- Output is remembered while clock is 0.



Summary

Combinational circuits implement Boolean functions

Gates and wires
Truth tables.
Fundamental building blocks.
Describe Boolean functions.

Sum-of-products. Systematic method to implement functions.

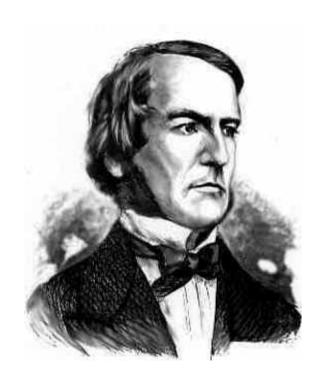
Sequential circuits add "state" to digital hardware.

■ Flip-flop. Represents 1 bit.

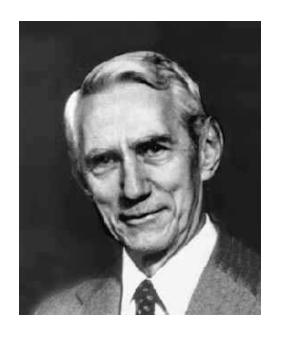
■ TOY register. 16 D flip-flops.

■ TOY main memory. 256 registers.

Next time: we build a complete TOY computer (oh yes).



George Boole (1815 - 1864)



Claude Shannon (1916 - 2001)