

2.3 Recursion

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
e New mode of thinking.
 Powerful programming paradigm.

Many computations are naturally self-referential.

e Binary search, mergesort, FFT, GCD.
e Linked data structures.
e A folder contains files and other folders.

Closely related to mathematical induction.

M. C. Escher, 1956

Mathematical Induction

Mathematical induction. Prove a statement involving an integer N by
* base case: Prove it for some specific N (usually O or 1).
e induction step: Assume it to be true for all positive integers less than N,
use that fact to prove it for N.

1 =1

1+3 =4

Ex. Sum of the first N odd integers is N2, 1+3+5 =9
1+3+5+7 =16

1+3+5+7+9 =25

Base case: True for N = 1.

Induction step:
e Let T(N) be the sum of the first N odd integers: 1+ 3 +5 + .. + (2N - 1),
e Assume that T(N-1) = (N-1)2
e T(N) = T(N-1) + (2N - 1)
=(N-1)2+ (2N - 1)
=N?-2N+1+(2N-1)
= N2

Recursive Program

Recursive Program. Implement a function having integer arguments by
e base case: Do something specific in response to "base” argument values.
e reduction step: Assume the function works for all smaller argument
values, and use the function fo implement itself for general argument

values.
public static String convert(int x)

{
if (x == 1) return "1";
return convert(x/2) + (x % 2);

\ automatic cast to
String
(either "0" or "1")
Ex 1. Convert positive int to binary string.

Base case: return "1" for x = 1.
Reduction step: 37 18
, "100101" = "10010" + "1"
e convert x/2 to binary
 append "0" if x even

e append "1" if x odd

Recursive Program

Recursive Program. Implement a function having integer arguments by
e base case: Implementing it for some specific values of the arguments.

* reduction step: Assume the function works for smaller values of its

arguments and use it to implement the function for the given values.

public class Binary

{

public static String convert(int x)
{

if (x == 1) return "1";

return convert(x/2) + (x % 2);

}

public static void main (String[] args)
{
int x = Integer.parseInt(args[0])
System.out.println (convert (x)) ;

} % java Binary 6
110
} % Jjava Binary 37
100101
% java Binary 999999

11110100001000111111

environment
public static String convert (int x)

{
if (x == 1) return "1";
return convert(x/2) + (x % 2);

environment
public static String convert (int x)

{

if (x == 1) return "1";
return convert(x/2) + (x % 2);
} "110"

public class Binary
{

public static int convert(int x)

{
if (x == 0) return "";
return convert(x/2) + (x % 2);

}

public static void main (String[] arg
{

int x = Integer.parselInt(args[0)) ;
System.out.println (convert (x)) ;

"110"

% java Binary 6
110

Recursion vs. Iteration

Every program with 1 recursive call corresponds to a loop.

public static String convert(int x) public static String convertNR (int x)
{ {

if (x == 1) return "1"; String s = "1";

return convert(x/2) + (x % 2); while (x > 1)

} {
s = (x % 2) + s;
x = x/2;
}

return s;

Reasons to use recursion:
* code more compact
e easier to understand
* easier to reason about correctness
* easy to add multiple recursive calls (stay tuned)

Reasons not to use recursion: (stay tuned)

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. gcd(4032,1272) = 24.

4032 = 26x32x 71!
1272 = 23 x 31 x H3!
gcd = 23x31=24

Applications.
e Simplify fractions: 1272/4032 = 53/168.
e RSA cryptosystem.

10

Greatest Common Divisor
GCD. Find largest integer that evenly divides into p and q.

Euclid's algorithm. [Euclid 300 BCE]

if g=0 <— base case

ged(p,q)=1 "
gcd(g, p % q) otherwise

reduction step,
converges to base case

gcd (4032, 1272) gcd (1272, 216)

ged (216, 192) \
gcd (192, 24)

gcd (24, 0)
24.

4032 = 3 x 1272 + 216

11

Euclid's Algorithm
GCD. Find largest integer d that evenly divides into p and q.

if g=0 <— base case

p
cd(p, q) =

converges to base case

gcd(p, q) = gcd(3x, 2x) = x

12

Euclid's Algorithm
GCD. Find largest integer d that evenly divides into p and q.

if g=0 <— base case

p
cd(p,q) =

converges to base case

Recursive program

public static int ged(int p, int q)
{

if (g == 0) return p; “— base case
else return gcd(q, p % 9); <— reduction step

13

p=1272,q= 216

environment

gcd(1272, 216)

static int gecd(int p, int q)
{

if (q == 0) return p;
else return gcd(q, p % 9)

14

- 1272, q = 216
P a ged(1272, 216)

environment
static int gecd(int p, int q)

{

if (q == 0) return p;
else return gcd(q, P % q)
} 24

public class Euclid
{
public static int ged(int p, int q)
{
if (q == 0) return p;
else return gecd(q, p % q);
}

public static void main (String[] args)
{
int p = Integer.parselInt(args[0])
int g = Integer.parselnt(args[l])
System.out.println(gcd(p, q))

24

} % java Euclid 1272 216
24

Possible debugging challenges with recursion

Missing base case.

public static double BAD (int N)

{
return BAD (N-1) + 1.0/N;

}

No convergence guarantee.

public static double BAD (int N)
{
if (N == 1) return 1.0;
return BAD(1 + N/2) + 1.0/N;

Both lead to INFINITE RECURSIVE LOOP (bad news).
Try it!

so that you can recognize and deal with it if it later happens to you

Collatz Sequence

Collatz sequence.
eIfnis1,stop.
e If nis even, divide by 2.
e If nis odd, multiply by 3 and add 1.

Ex. 35106 531608040201051684 2 1.

public static void collatz (int N)
{

StdOut.print(N + " ") ;
if (N == 1) return;
if (N % 2 == 0) collatz(N / 2);

else collatz(3*N + 1) ;

No one knows whether or not this function terminates for all N (1)
[usually we decrease N for all recursive calls]

Recursive Graphics

P FQ'ETLZE"

New Yorker Magazine, August 11, 2008

18

Arts:: o
LEISURE FRIDAY, DECEMBER 15, 2006

iz Life Now ax
the Conger Hewitt
Nativnal Design

Fruits of Design,
Certified Organic

i st th
Design Life Now,” the mu

ROBERTA aoruae

Lupton and Matika McQuaid and a
fuest, Brooke Hodge, a curator at the Mu-

" Cavering s many ba

5 50 0ol

en if you
range from genius
They covy
s redterations of receiv

to Surrealism) and more

1 *The Yale Book of Quotations™
to “Posteards From aseloction
of the best holiday books.

The Gifts to Open
Again and Again

twice, [U's a list
day book, and af-
1

ooksof C
Tines. A gift book shoul
ine th :

ane yon

2

! e 1

o 1t should efther be expenst

cheapand small 1t shoukd

ly trivolous. And no matter

ot require sustained atten-
u eyl

i

WILLIAM
CRIVES
sooes

random bt with exqu

these requirements.
Let's open the big presents first. The:

per, inevery way, i New York 2000, t
ment in Robert A, M, St

New Yo

tern's architectu
s in 1890, whe

e
aunces, “New York

ze 46

Divine and Devotee Meet Across Hinges

ASHINGTON — For toothas
in ASAP, She'll bein
St Matthew, ex-banke
 he'l el e

St Roch, p
HOLLAND plasue, is as pooc as a fiu
COTTER Shot ad thatliphuing wit
nevie strike when St Barba-
neview Mast impartant, for dire
an

angible probl
sotable g1

fering genthe att
vice. e

b one of Jorge Luis Bo

e
im copy o
simply b

"
He mana

word for word, a sponta- ADE right now, which «
duplicate that Borges's narrator finds to be cading right now, which shows his version of
ni icher” thin the original because 1t can- of the page you are reading right now,

tains all manny

istians half a millen-

elestial wellare sysiem, aval
ableto all believers, And ane quick wa

of the kind found in “F
ts: Unfolding

Inting o
Por ot
" at the Natianal Gallery

hably rothing in Western
closer to formal

pium, Luxembourg and parts of

€he New York Eimes

TEFER

K

gty
HH
il
s'ii' ;5;{1’3

b
H
A

i
i
i
i
i

——
A, I Ove r O‘,er
B Ot b

e

i e ST P v
e et i o

L e
et sy -

RS
L

i

Black, White and Read All Over Over

By RANDY KENNEDY When @ young
ges's bestknown short OFkitya set out n

copyist
little less a
simply want

Serkan Ozkaya'sdrawing of the page you are
reading right now, showingg his drawingof the
page you are reading right naw, showing, . ..

Turkish artist pamed
ntly to practice &

Plerre Menard, Author of the Quixote,” &

space-time-newsprint contiruurm,
st who

"
page of this newspaper - 1

of new meanings ard inflectian
its proper time and cantext

w0t be alarmed: There has been no break in the Cantirued on Page 51

hed s it i

Fran

. These painters were pictorial

aftolfamil- — pggicians, creating visual wor Prayers and Poririts:
persorneling pically abstract and mic Urjoiding the
alistic,of peerless Notheriandish
Yo all. iptye

vo- Tuws panes of an

th-ce

the centurles, with «
survive in their intended form.
Prayers and Portralis” is an attempe
torestore that form, at least o few of
the nistorians and art

e

od on Page 4

19

Fl ik g s o s e s i s B g B B B
T 6 40 T R A B
J s s st s s Vb B B
T 0 o 6 6 8
Fl bt B Bl it s Nl Bt B B
T 6 A A R B
JL s B s et At] b s (B
T o T T O T 8
Tl it s L ik vt B v B B B Bt B
T 6 A T R B
F s B s s s B B
i i i e e A e e e
Fl bt A o Sl it s sl i i B B
T s o 6 6 0 (A4 B
ey e N e i et ey e o s
T 0T T A 8

H-tree of order n.
 Draw an H.

Htree

and half the size

N

* Recursively draw 4 H-trees of order n-1, one connected to each tip.

order 1

%

-
B

order 2

%
%

tip

order 3

21

Htree in Java

public class Htree

{
public static void draw(int n, double sz, double x, double y)
{
if (n == 0) return;
double x0 = x - sz/2, x1 = x + sz/2;
double y0 =y - sz/2, yl =y + sz/2;
StdDraw.line(x0, vy, x1, vy);
StdDraw.line(x0, y0, x0, yl); <«— draw the H, centered on (x,y)
StdDraw.line(x1l, y0, x1, yl1);
draw(n-1, sz/2, x0, yO0);
draw(n-1, sz/2, x0, yl); < recursively draw 4 half-size Hs
draw(n-1, sz/2, x1, yO0);
draw(n-1, sz/2, x1, yl);
}

T X ,
public static void main(String[] args) i.(071) ?xny)
{ !

int n = Integer.parselnt(args[0]); | (x,7)
draw(n, .5, .5, .5); sz—>1 ¢ o ®
} |
} i
Lo (xy, 1) ¢ (x1,7,)

22

Animated H-tree

nd after drawing each H.

%

1 seco

for

Pause

Animated H-tree.

0

T
i

Mmhani S
o b

i ||
s e

-
M|
R A

"
.

-
-

y

-

Towers of Hanoi

http://en.wikipedia.org/wiki/Image:Hanoiklein. jpg

24

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
 Only one disc may be moved at a time.

A disc can be placed either on empty peg or on top of a larger disc.

|

4 i

start finish

Edouard Lucas (1883)

25

Towers of Hanoi: Recursive Solution

i

Move n-1 smallest discs right. Move largest disc left.

cyclic wrap-around

Move n-1 smallest discs right.

26

Towers of Hanoi Legend
Q. Is world going to end (according to legend)?
* 64 golden discs on 3 diamond pegs.

e World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?

27

Towers of Hanhoi: Recursive Solution

public class TowersOfHanoi

{
public static void moves (int n, boolean left)
{
if (n == 0) return;
moves (n-1, !'left);
if (left) System.out.println(n + " left");
else System.out.println(n + " right");
moves (n-1, 'left);
}
public static void main (String[] args)
{
int N = Integer.parseInt(args[0]);
moves (N, true);
}
}

moves (n, true) : move discs 1 to none pole to the left
moves (n, false): move discs 1 to none pole to the right

smallest disc

28

Towers of Hanoi: Recursive Solution

every other move is smallest disc

|

subdivisions
of
ruler

29

Towers of Hanoi: Recursion Tree

2, false i 2, fals

7N\ y .\\
70N N

SN N N \\
0NN ;// AN/ \\

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.
e Takes 2" - 1 moves to solve n disc problem.
e Sequence of discs is same as subdivisions of ruler.
 Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!

e Alternate between two moves: o left iF s odd

- move smallest disc to right if n is even -

- make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.
» Takes 585 billion years for n = 64 (at rate of 1 disc per second).
* Reassuring fact: any solution takes at least this long!

31

Divide-and-Conquer

Divide-and-conquer paradigm.

= Break up problem into smaller subproblems of same structure.
= Solve subproblems recursively using same method.

Combine results to produce solution to original problem.

Divide et impera. Veni, vidi, vici. - Julius Caesar

Many important problems succumb to divide-and-conquer.

FFT for signal processing.

= Parsers for programming languages.

= Multigrid methods for solving PDEs.

@ Quicksort and mergesort for sorting.

= Hilbert curve for domain decomposition.

= Quad-tree for efficient N-body simulation.

= Midpoint displacement method for fractional Brownian motion.

32

Fibonacci Numbers

33

Fibonacci Numbers

Fibonacci numbers. 0,1,1,2, 3,5, 8,13, 21, 34, ..

(0 if n=0
Fn = 1 1 lf n =1
| F,,+F,, otherwise

48
se
Y6 wy

3383 38 ;
38888838 ¥

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)

34

Fibonacci Numbers

pinecone

cauliflower

see much, much more at www.youtube.com/user/Vihart

35

A Possible Pitfall With Recursion

Fibonacci numbers. 0,1,1,2,3,5, 8, 13, 21, 34, ..

FYI (classical math):

P ()

(0 it n=0 = NG
Fn=<1 if n =1 — |-¢”/\/§J
| F,,+F,, otherwise

¢ = golden ratio = 1.618

Ex: F(50) ~ 1.2 x 1010
A natural for recursion?

public static long F(int n)

{
if (n == 0) return O;
if (n == 1) return 1;
return F(n-1) + F(n-2);
}

36

Recursion Challenge 1 (difficult but important)

Is this an efficient way to compute F(50)?

public static long F(int n)
{
if (n == 0) return O;
if (n == 1) return 1;
return F(n-1) + F(n-2);

37

Recursion Challenge 2 (easy and also important)

Is this an efficient way to compute F(50)?

long[] F = new long[51];
F[O0] = 0; F[1] = 1;
if (n == 1) return 1;

for (int i = 2; i <= 50; i++)
F[i] = F[i-1] + F[i-2];

38

Summary

How to write simple recursive programs?
* Base case, reduction step.
* Trace the execution of a recursive program.

e Use pictures.

Why learn recursion?
e New mode of thinking.
 Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.
Exponential time.

o Easy to specify recursive program that takes exponential time.
e Don't do it unless you plan to (and are working on a small problem).

39

