COS 126Recursive Graphics |
Programming Assignment |

Write a program that plots a Sierpinski triangle, as illustrated below. Then, develop a program that plots a recursive pattern of your own design.

**Part 1. **
The *Sierpinski triangle*
is another example of a fractal pattern like the H-tree pattern from Section 2.3
of the textbook.
The Polish mathematician Wacław Sierpiński described the pattern in 1915,
but it has appeared in Italian art since the 13th century.
Though the Sierpinski triangle looks complex, it can be generated with a
short recursive program.
Your task is to write a program `Sierpinski.java` with a recursive
function `sierpinski()` and a `main()` function
that calls the recursive
function once, and plots the result using standard drawing.
Think recursively: `sierpinski()` should draw one filled
equilateral triangle
(pointed downwards) and then call itself recursively 3
times (with an appropriate stopping condition).
When writing your program, exercise modular design: include
a (non-recursive) function `filledTriangle()` that draws
a filled equilateral triangle of a specified size at a specified location.

Your program shall take *one* integer command-line argument *N*, to
control the depth of the recursion. All of the drawing should fit snugly inside
the equilateral triangle with endpoints (0, 0), (1, 0), and (1/2, √3/2).
**Do NOT change the scale of the drawing window.**
First, make sure that your program draws a single filled equilateral triangle
when *N* equals 1. Then, check that it draws four filled equilateral
triangles when *N* equals 2.
Your program will be nearly (or completely) debugged when you get to
this point.

**API specification.** Your program Sierpinski.java must be organized
as a library of static methods with the following API:

public class Sierpinski -------------------------------------------------------------------------------- void filledTriangle(double x, double y, double s) //draw shaded equilateral triangle with bottom vertex (x, y), side length svoid sierpinski(int n, double x, double y, double s) //draw one triangle, bottom vertex (x, y), side s; recursively call itself three times to generate the next order Sierpinski triangles above, left and right of current trianglevoid main(String[] args) //read order of recursion N as a command-line argument; draw gray outline triangle with endpoints (0, 0), (1, 0), and (1/2, √3/2); generate an order-N Sierpinski triangle inside the outline

**Examples.**
Below are the target Sierpinski triangles for different values of *N*.

%java Sierpinski 1%java Sierpinski 2%java Sierpinski 3%java Sierpinski 4%java Sierpinski 5%java Sierpinski 6

**A diversion: fractal dimension.**
In grade school, we learn that the dimension of a line segment is one,
the dimension of a square is two, and the dimension of a cube is three.
But you probably didn't learn what is really meant by *dimension*. How
can we express what it means mathematically or computationally?
Formally, we can define the *Hausdorff dimension*
or *similarity dimension*
of a self-similar figure by partitioning the figure into
a number of self-similar pieces of smaller size.
We define the dimension to be the
log (# self similar pieces) / log (scaling factor in each spatial direction).
For example, we can decompose the unit square into 4 smaller
squares, each of side length 1/2; or we can decompose it into 25 squares,
each of side length 1/5.
Here, the number of self-similar pieces is 4 (or 25) and
the scaling factor is 2 (or 5).
Thus, the dimension of a square is 2 since
log (4) / log(2) = log (25) / log (5) = 2.
We can decompose the unit cube into 8 cubes,
each of side length 1/2; or we can decompose it into 125 cubes,
each of side length 1/5.
Therefore, the dimension of a cube is log(8) / log (2) = log(125) / log(5) = 3.

We can also apply this definition directly to the (set of white points in) Sierpinski triangle. We can decompose the unit Sierpinski triangle into 3 Sierpinski triangles, each of side length 1/2. Thus, the dimension of a Sierpinski triangle is log (3) / log (2) ≈ 1.585. Its dimension is fractional—more than a line segment, but less than a square! With Euclidean geometry, the dimension is always an integer; with fractal geometry, it can be something in between. Fractals are similar to many physical objects; for example, the coastline of Britain resembles a fractal, and its fractal dimension has been measured to be approximately 1.25.

**Part 2. **
In this part you will create
a program `Art.java` that
produces a recursive drawing of your own design.
It must take
*one* integer command-line argument *N*
that controls the depth of recursion.
It should stay within the drawing window when `N` is between 1 and 7.
It can be a geometric pattern, a random construction, or
anything else
that takes advantage of recursive functions.
For full marks, your code should not be too similar to
the in-class examples (e.g., `Htree`,
`Sierpinski`, `Brownian`), and
it should
not be something that could be easily rewritten to
use a loop in place of recursion.

**Submission. **
Submit `Sierpinski.java` and `Art.java`.
If your `Art.java` requires any supplementary image files, submit them as well.
Finally, submit a
readme.txt
file and answer the questions therein.