Boosting: Foundations and Algorithms

Rob Schapire

Example: Spam Filtering

- problem: filter out spam (junk email)
- gather large collection of examples of spam and non-spam:

```
From: yoav@ucsd.edu Rob, can you review a paper... non-spam
From: xa412@hotmail.com Earn money without working!!!! ... spam
:
```

 goal: have computer learn from examples to distinguish spam from non-spam

Machine Learning

- studies how to automatically learn to make accurate predictions based on past observations
- classification problems:
 - classify examples into given set of categories

Examples of Classification Problems

- text categorization (e.g., spam filtering)
- fraud detection
- machine vision (e.g., face detection)
- natural-language processing (e.g., spoken language understanding)
- market segmentation
 (e.g.: predict if customer will respond to promotion)
- bioinformatics
 (e.g., classify proteins according to their function)
 :

Back to Spam

- main observation:
 - easy to find "rules of thumb" that are "often" correct
 - If 'viagra' occurs in message, then predict 'spam'
 - hard to find single rule that is very highly accurate

The Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to 2nd subset of examples
- obtain 2nd rule of thumb
- repeat T times

Key Details

- how to choose examples on each round?
 - concentrate on "hardest" examples (those most often misclassified by previous rules of thumb)
- how to combine rules of thumb into single prediction rule?
 - take (weighted) majority vote of rules of thumb

Boosting

- boosting = general method of converting rough rules of thumb into highly accurate prediction rule
- technically:
 - assume given "weak" learning algorithm that can consistently find classifiers ("rules of thumb") at least slightly better than random, say, accuracy $\geq 55\%$ (in two-class setting) ["weak learning assumption"]
 - given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%

Early History

- [Valiant '84]:
 - introduced theoretical ("PAC") model for studying machine learning
- [Kearns & Valiant '88]:
 - open problem of finding a boosting algorithm
- if boosting possible, then...
 - can use (fairly) wild guesses to produce highly accurate predictions
 - if can learn "part way" then can learn "all the way"
 - should be able to improve any learning algorithm
 - for any learning problem:
 - either can always learn with nearly perfect accuracy
 - or there exist cases where cannot learn even slightly better than random guessing

First Boosting Algorithms

- [Schapire '89]:
 - first provable boosting algorithm
- [Freund '90]:
 - "optimal" algorithm that "boosts by majority"
- [Drucker, Schapire & Simard '92]:
 - first experiments using boosting
 - limited by practical drawbacks
- [Freund & Schapire '95]:
 - introduced "AdaBoost" algorithm
 - strong practical advantages over previous boosting algorithms

A Formal Description of Boosting

- given training set $(x_1, y_1), \dots, (x_m, y_m)$
- $y_i \in \{-1, +1\}$ correct label of instance $x_i \in X$
- for t = 1, ..., T:
 - construct distribution D_t on $\{1,\ldots,m\}$
 - find weak classifier ("rule of thumb")

$$h_t: X \to \{-1, +1\}$$

with small error ϵ_t on D_t :

$$\epsilon_t = \Pr_{i \sim D_t}[h_t(x_i) \neq y_i]$$

output final classifier H_{final}

- constructing D_t :
 - $D_1(i) = 1/m$
 - given D_t and h_t :

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } y_i = h_t(x_i) \\ e^{\alpha_t} & \text{if } y_i \neq h_t(x_i) \end{cases}$$
$$= \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where
$$Z_t =$$
 normalization factor $\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

- final classifier:
 - $H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right)$

Toy Example

weak classifiers = vertical or horizontal half-planes

Round 1

Round 2

Round 3

Final Classifier

AdaBoost (recap)

- given training set $(x_1, y_1), \dots, (x_m, y_m)$ where $x_i \in X$, $y_i \in \{-1, +1\}$
- initialize $D_1(i) = 1/m \ (\forall i)$
- for t = 1, ..., T:
 - train weak classifier $h_t: X \to \{-1, +1\}$ with error $\epsilon_t = \mathsf{Pr}_{i \sim D_t} \left[h_t(x_i) \neq y_i \right]$
 - $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$
 - update ∀i:

$$D_{t+1}(i) = \frac{D_t(i)}{Z_t} \exp(-\alpha_t y_i h_t(x_i))$$

where Z_t = normalization factor

•
$$H_{\text{final}}(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

[with Freund]

- Theorem:
 - write ϵ_t as $\frac{1}{2} \gamma_t$ [$\gamma_t =$ "edge"]
 - then

$$\begin{array}{ll} \mathrm{training\ error}(H_{\mathrm{final}}) & \leq & \prod_t \left[2\sqrt{\epsilon_t(1-\epsilon_t)} \right] \\ \\ & = & \prod_t \sqrt{1-4\gamma_t^2} \\ \\ & \leq & \exp\left(-2\sum_t \gamma_t^2 \right) \end{array}$$

- so: if $\forall t: \gamma_t \geq \gamma > 0$ then training error(H_{final}) $\leq e^{-2\gamma^2 T}$
- AdaBoost is adaptive:
 - does not need to know γ or T a priori
 - can exploit $\gamma_t \gg \gamma$

How Will Test Error Behave? (A First Guess)

expect:

- training error to continue to drop (or reach zero)
- ullet test error to increase when H_{final} becomes "too complex"
 - "Occam's razor"
 - overfitting
 - hard to know when to stop training

Technically...

with high probability:

generalization error
$$\leq$$
 training error $+$ $\tilde{O}\left(\sqrt{\frac{dT}{m}}\right)$

- bound depends on
 - m = # training examples
 - d = "complexity" of weak classifiers
 - *T* = # rounds
- ullet generalization error = E [test error]
- predicts overfitting

Overfitting Can Happen

(boosting "stumps" on heart-disease dataset)

• but often doesn't...

Actual Typical Run

- test error does not increase, even after 1000 rounds
 - (total size > 2,000,000 nodes)
- test error continues to drop even after training error is zero!

	# rounds			
	5	100	1000	
train error	0.0	0.0	0.0	
test error	8.4	3.3	3.1	

Occam's razor wrongly predicts "simpler" rule is better

A Better Story: The Margins Explanation

[with Freund, Bartlett & Lee]

- key idea:
 - training error only measures whether classifications are right or wrong
 - should also consider confidence of classifications
- recall: H_{final} is weighted majority vote of weak classifiers
- measure confidence by margin = strength of the vote
 - = (weighted fraction voting correctly)
 - –(weighted fraction voting incorrectly)

Empirical Evidence: The Margin Distribution

- margin distribution
 - = cumulative distribution of margins of training examples

	# rounds			
	5	100	1000	
train error	0.0	0.0	0.0	
test error	8.4	3.3	3.1	
% margins ≤ 0.5	7.7	0.0	0.0	
minimum margin	0.14	0.52	0.55	

11

Theoretical Evidence: Analyzing Boosting Using Margins

- Theorem: large margins ⇒ better bound on generalization error (independent of number of rounds)
- Theorem: boosting tends to increase margins of training examples (given weak learning assumption)
 - moreover, larger edges ⇒ larger margins

Consequences of Margins Theory

- predicts good generalization with no overfitting if:
 - weak classifiers have large edges (implying large margins)
 - weak classifiers not too complex relative to size of training set
- e.g., boosting decision trees resistant to overfitting since trees often have large edges and limited complexity
- overfitting may occur if:
 - small edges (underfitting), or
 - overly complex weak classifiers
- e.g., heart-disease dataset:
 - stumps yield small edges
 - also, small dataset

More Theory

- many other ways of understanding AdaBoost:
 - as playing a repeated two-person matrix game
 - weak learning assumption and optimal margin have natural game-theoretic interpretations
 - special case of more general game-playing algorithm
 - as a method for minimizing a particular loss function via numerical techniques, such as coordinate descent
 - using convex analysis in an "information-geometric" framework that includes logistic regression and maximum entropy
 - as a universally consistent statistical method
- can also derive optimal boosting algorithm, and extend to continuous time

Practical Advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - → shift in mind set goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification

Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 - → overfitting
 - weak classifiers too weak $(\gamma_t \to 0$ too quickly)
 - → underfitting
 - → low margins → overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise

[with Freund]

- tested AdaBoost on UCI benchmarks
- used:
 - C4.5 (Quinlan's decision tree algorithm)
 - "decision stumps": very simple rules of thumb that test on single attributes

UCI Results

[Viola & Jones]

- · problem: find faces in photograph or movie
- weak classifiers: detect light/dark rectangles in image

many clever tricks to make extremely fast and accurate

Application: Human-computer Spoken Dialogue

[with Rahim, Di Fabbrizio, Dutton, Gupta, Hollister & Riccardi]

- application: automatic "store front" or "help desk" for AT&T Labs' Natural Voices business
- caller can request demo, pricing information, technical support, sales agent, etc.
- interactive dialogue

How It Works

- NLU's job: classify caller utterances into 24 categories (demo, sales rep, pricing info, yes, no, etc.)
- weak classifiers: test for presence of word or phrase