Widespread Deployment

- Worldwide cellular subscribers
 - 1993: 34 million
 - 2005: more than 2 billion
 - 2009: more than 4 billion
- landline subscribers

- Wireless local area networks
 - Wireless adapters built into laptops, tablets, & phones
 - More than 220,000 known WiFi locations in 134 countries
 - Probably many, many more (e.g., home networks, corporate networks, ...)

Wireless Properties

- Interference / bit errors
 - More sources of corruption compared to wired
- Multipath propagation
 - Signal does not travel in a straight line
- Broadcast medium
 - All traffic to everyone
- Power trade-offs
 - Important for power constrained devices

Wireless Links

Wireless Links: High Bit Error Rate

- Decreasing signal strength
 - Disperses as it travels greater distance
 - Attenuates as it passes through matter
Wireless Links: High Bit Error Rate

- Multi-path propagation
 - Electromagnetic waves reflect off objects
 - Taking many paths of different lengths
 - Causing blurring of signal at the receiver

Dealing With Bit Errors

- Wireless vs. wired links
 - Wired: most loss is due to congestion
 - Wireless: higher, time-varying bit-error rate

- Dealing with high bit-error rates
 - Sender could increase transmission power
 - Requires more energy (bad for battery-powered hosts)
 - Creates more interference with other senders
 - Stronger error detection and recovery
 - More powerful error detection/correction codes
 - Link-layer retransmission of corrupted frames

Wireless Links: Broadcast Limitations

- Wired broadcast links
 - E.g., Ethernet bridging, in wired LANs
 - All nodes receive transmissions from all other nodes

- Wireless broadcast: hidden terminal problem

- A and B hear each other
- B and C hear each other
- But, A and C do not

So, A and C are unaware of their interference at B

Example Wireless Link Technologies

- Data networks
 - 802.15.1 (Bluetooth): 2.1 Mbps – 10 m
 - 802.11b (WiFi): 5-11 Mbps – 100 m
 - 802.11a and g (WiFi): 54 Mbps – 100 m
 - 802.11n (WiFi): 200 Mbps – 100 m
 - 802.16 (WiMax): 70 Mbps – 10 km

- Cellular networks, outdoors
 - 2G: 56 Kbps
 - 3G: 384 Kbps
 - 3G enhanced (“4G”): 4 Mbps
 - LTE

Wireless Network: Wireless Link

- Typically used to connect mobile(s) to base station
- Also used as backbone link
- Multiple access protocol coordinates link access
Wireless Network: Wireless Hosts

- **Wireless host**
 - Laptop, smartphone
 - Run applications
 - May be stationary (non-mobile) or mobile

Wireless Network: Base Station

- **Base station**
 - Typically connected to wired network
 - Relay responsible for sending packets between wired network and wireless hosts in its “area”
 - E.g., cell towers, 802.11 access points

Wireless Network: Infrastructure

- **Network infrastructure**
 - Larger network with which a wireless host wants to communicate
 - Typically a wired network
 - Provides traditional network services
 - May not always exist

Infrastructure Mode (APs)

- **Infrastructure mode**
 - Base station connects mobiles into wired network
 - Network provides services (addressing, routing, DNS)
 - Handoff: mobile changes base station providing connection to wired network

Channels and Association

- **Multiple channels at different frequencies**
 - Network administrator chooses frequency for AP
 - Interference if channel is same as neighboring AP

- **Beacon frames from APs**
- **Associate request from host**
- **Association response from AP**
Mobility Within the Same Subnet

- H1 remains in same IP subnet
 - IP address of the host can remain same
 - Ongoing data transfers can continue uninterrupted
- H1 recognizes the need to change
 - H1 detects a weakening signal
 - Starts scanning for stronger one
- Changes APs with same SSID
 - H1 disassociates from one
 - And associates with other
- Switch learns new location
 - Self-learning mechanism

WiFi: 802.11 Wireless LANs

802.11 LAN Architecture

- Access Point (AP)
 - Base station that communicates with the wireless hosts
- Basic Service Set (BSS)
 - Coverage of one AP
 - AP acts as the master
 - Identified by an “network name” known as an SSID

SSID: Service Set Identifier

CSMA: Carrier Sense, Multiple Access

- Multiple access: channel is shared medium
 - Station: wireless host or access point
 - Multiple stations may want to transmit at same time
- Carrier sense: sense channel before sending
 - Station doesn’t send when channel is busy
 - To prevent collisions with ongoing transfers
 - But, detecting ongoing transfers isn’t always possible

CA: Collision Avoidance, Not Detection

- Collision detection in wired Ethernet
 - Station listens while transmitting
 - Detects collision with other transmission
 - Aborts transmission and tries sending again
- Problem #1: cannot detect all collisions
 - Hidden terminal problem
 - Fading

So, 802.11 does collision avoidance, not detection
Hidden Terminal Problem

• A and C can’t see each other, both send to B
• Occurs b/c 802.11 relies on physical carrier sensing, which is susceptible to hidden terminal problem

Virtual carrier sensing

• First exchange control frames before transmitting data
 – Sender issues “Request to Send” (RTS), incl. length of data
 – Receiver responds with “Clear to Send” (CTS)
• If sender sees CTS, transmits data (of specified length)
• If other node sees CTS, will idle for specified period
• If other node sees RTS but not CTS, free to send

Hidden Terminal Problem

• A and C can’t see each other, both send to B

Exposed Terminal Problem

• B sending to A, C wants to send to D
• As C receives B’s packets, carrier sense would prevent it from sending to D, even though wouldn’t interfere
• RTS/CTS can help
 – C hears RTS from B, but not CTS from A
 – C knows it’s transmission will not interfere with A
 – C is safe to transmit to D

Impact on Higher-Layer Protocols

• Wireless and mobility change path properties
 – Wireless: higher packet loss, not from congestion
 – Mobility: transient disruptions, and changes in RTT
• Logically, impact should be minimal ...
 – Best-effort service model remains unchanged
 – TCP and UDP can (and do) run over wireless, mobile
• But, performance definitely is affected
 – TCP treats packet loss as a sign of congestion
 – TCP tries to estimate the RTT to drive retransmissions
 – TCP does not perform well under out-of-order packets
• Internet not designed with these issues in mind

Bluetooth: 802.15.1
“personal-area-networks”
Bluetooth piconets
- Up to 7 “slave” devices and 225 “parked” devices
- Operates on unlicensed wireless spectrum
 - How to prevent interference?

PHY: Spread Spectrum – Frequency Hopping
- Nodes rapidly jump between frequencies
- Sender and receiver coordinated in jumps
 - How coordinate? Pseudorandom number generator, with shared input known to sender/receiver
- If randomly collide with other transmitted, only for short period before jump again
- Bluetooth
 - 79 frequencies, on each frequency for 625 microseconds
 - Each channel also uses TDMA, with each frame taking 1/3/5 consecutive slots.
 - Only master can start in odd slot, slave only in response

Ad-Hoc Networks
- Ad hoc mode
 - No base stations
 - Nodes can only transmit to other nodes within link coverage
 - Nodes self-organize and route among themselves
 - Can create multi-hop wireless networks, instead of a wired backend

Infrastructure vs. Ad Hoc
- Infrastructure mode
 - Wireless hosts are associated with a base station
 - Traditional services provided by the connected network
 - E.g., address assignment, routing, and DNS resolution
- Ad hoc networks
 - Wireless hosts have no infrastructure to connect to
 - Hosts themselves must provide network services
- Similar in spirit to the difference between
 - Client-server communication
 - Peer-to-peer communication

Delay Tolerant Networking
- Nodes can both route and store
 - Next hop is available, forward
 - Otherwise, store packets
- Useful for data collection with no time limit
 - E.g., sensors in the field
- Analogous to email
 - Hold onto packets until another hop can take it from you
 - Eventually reach its destination

The Upside to Interference
- Some systems leverage interference
- If packets collide once, likely will again
 - Can use both collisions to construct original packets
 - Reduce effective error rate significantly
- If two hosts send to each other through an AP, and they collide, AP can broadcast collision to both
 - Both know what they sent, can “subtract” that from collision to get the other
 - Improves throughput of system!
Conclusions

• **Wireless**
 – Already a major way people connect to the Internet
 – Gradually becoming more than just an access network

• **Mobility (not discussed)**
 – Today’s users tolerate disruptions as they move
 – ... and applications try to hide the effects
 – Tomorrow’s users expect seamless mobility

• **Challenges the design of network protocols**
 – Wireless breaks the abstraction of a link, and the assumption that packet loss implies congestion
 – Mobility breaks association of address and location
 – Higher-layer protocols don’t perform as well