Network Measurement
Jennifer Rexford
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101
http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Why Measure the Network?
• Scientific discovery
 – Characterizing traffic, topology, performance
 – Understanding protocol performance and dynamics
• Network operations
 – Billing customers
 – Detecting, diagnosing, and fixing problems
 – Planning outlay of new equipment

Types of Measurement
end-to-end performance
average download time of a web page
TCP bulk throughput
end-to-end delay and loss
link bit error rate
link utilization
traffic matrix
active topology
demand model
state
end-to-end performance
packet and flow measurements, link statistics

Traffic Measurement
Packet Monitoring
• Definition
 – Passively collecting IP packets on one or more links
 – Recording IP, TCP/UDP, or application-layer traces
• Scope
 – Fine-grain information about user behavior
 – Passively monitoring the network infrastructure
 – Characterizing traffic and diagnosing problems

Monitoring a LAN Link
Shared media (Ethernet, wireless)
Host A Host B Monitor
Multicast switch
Host A Host B Host C Monitor
Bridge Monitor
Host A Host B
Monitoring a WAN Link

Selecting the Traffic
- Filter to focus on a subset of the packets
 - IP addresses/prefixes (e.g., to/from specific sites)
 - Protocol (e.g., TCP, UDP, or ICMP)
 - Port numbers (e.g., HTTP, DNS, BGP, Napster)
- Collect first n bytes of packet (snap length)
 - Medium access control header (if present)
 - IP header (typically 20 bytes)
 - IP+UDP header (typically 28 bytes)
 - IP+TCP header (typically 40 bytes)
 - Application-layer message (entire packet)

Analysis of IP Header Traces
- Source/destination addresses
 - Identity of popular Web servers & heavy customers
- Distribution of packet delay through the router
 - Identification of typical delays and anomalies
- Distribution of packet sizes
 - Workload models for routers
- Burstiness of the traffic on the link over time
 - Provisioning rules for allocating link capacity
- Throughput between pairs of src/dest addresses
 - Detection and diagnosis of performance problems

TCP Header Analysis
- Source and destination port numbers
 - Popular applications; parallel connections
- Sequence/ACK numbers and packet timestamps
 - Out-of-order/lost packets; throughput and delay
- Number of packets/bytes per connection
 - Web transfer sizes; frequency of bulk transfers
- SYN flags from client machines
 - Unsuccessful requests; denial-of-service attacks
- FIN/RST flags from client machines
 - Frequency of Web transfers aborted by clients

Packet Contents
- Application-layer header
 - HTTP and RTSP request and response headers
 - FTP, NNTP, and SMTP commands and replies
 - DNS queries and responses; OSPF/BGP messages
- Application-layer body
 - HTTP resources (or checksums of the contents)
 - User keystrokes in Telnet/Rlogin sessions

Application-Layer Analysis
- URLs from HTTP request messages
 - Popular resources/sites; benefits of caching
- Meta-data in HTTP request/response messages
 - Content type, cacheability, change frequency, etc.
 - Browsers, protocol versions, protocol features, etc.
- Contents of DNS messages
 - Common queries, error frequency, query latency
- Contents of Telnet/Rlogin sessions
 - Intrusion detection (break-ins, stepping stones)
Flow Measurement (e.g., NetFlow)

- Set of packets that “belong together”
 - Source/destination IP addresses and port numbers
 - Same protocol, ToS bits, ...
 - Same input/output interfaces at a router (if known)
- Packets that are “close” together in time
 - Maximum spacing between packets (e.g., 30 sec)
 - E.g.: flows 2 and 4 are different flows due to time

Flow Abstraction

- Not exactly the same as a “session”
 - Sequence of related packets may be multiple flows
 - Related packets may not follow the same links
 - “Session” is hard to measure from inside network
- Motivation for this abstraction
 - As close to a “session” as possible from inside
 - Router optimization for forwarding/access-control
 - ... might as well throw in a few counters

Traffic Statistics (e.g., Netflow)

- Packet header info
 - Source and destination addresses and port #s
 - Other IP & TCP/UDP header fields (protocol, ToS)
- Aggregate traffic information
 - Start and finish time (time of first & last packet)
 - Total # of bytes and number of packets in the flow
 - TCP flags (e.g., logical OR over sequence of packets)

Recording Routing Information

- Input and output interfaces
 - Input interface is where packets entered the router
 - Output interface is “next hop” in forwarding table
- Source and destination IP prefix (mask length)
 - Longest prefix match on src and dest IP addresses

Measuring Traffic as it Flows By

Source and destination: IP header
Source and dest prefix: forwarding table or BGP table
Source and destination AS: BGP table
Packet vs. Flow Measurement

- Basic statistics (available from both techniques)
 - Traffic mix by IP addresses, port numbers, protocol
 - Average packet size
- Traffic over time
 - Both: traffic volumes on medium-to-large time scale
 - Packet: burstiness of the traffic on a small time scale
- Statistics per TCP connection
 - Both: volume of traffic transferred over the link
 - Packet: frequency of lost or out-of-order packets

Collecting Flow Measurements

- Basic stats (available from both techniques)
- Traffic mix by IP addresses, port numbers, protocol
- Average packet size
- Traffic over Lme
 - Both: traffic volumes on medium-to-large Lme scale
 - Packet: burstiness of the traffic on a small Lme scale
- StastsLcs per TCP connecLon
 - Both: volume of traffic transferred over the link
 - Packet: frequency of lost or out-of-order packets

Mechanics: Flow Cache

- Maintain a cache of active flows
 - Storage of byte/packet counts, timestamps, etc.
- Compute a key per incoming packet
 - Concatenation of source, destination, port #s, etc.
- Index into the flow cache based on the key
 - Creation or updating of an entry in the flow cache

Mechanics: Evicting Cache Entries

- Flow timeout
 - Remove flows not receiving a packet recently
 - Periodic sequencing to time out flows
 - New packet triggers the creation of a new flow
- Cache replacement
 - Remove flow(s) when the flow cache is full
 - Evict existing flow(s) upon creating a cache entry
 - Apply eviction policy (LRU, random flow, etc.)
- Long-lived flows
 - Remove flow(s) persisting a long time (e.g., 30 min)

Measurement Overhead

- Per-packet overhead
 - Computing the key and indexing flow cache
 - More work when the average packet size is small
 - May not be able to keep up with the link speed
- Per-flow overhead
 - Creation and eviction of entry in the flow cache
 - Volume of measurement data (# of flow records)
 - Larger # of flows when #packets per flow is small
 - May overwhelm system collecting/analyzing data

Sampling: Packet Sampling

- Packet sampling before flow creation
 - 1-out-of-m sampling of individual packets
 - Create of flow records over the sampled packets
- Reducing overhead
 - Avoid per-packet overhead on (m-1)/m packets
 - Avoid creating records for many small flows
Motivation for BGP Monitoring

- Visibility into external destinations
 - What neighboring ASes are telling you
 - How you are reaching external destinations
- Detecting anomalies
 - Increases in number of destination prefixes
 - Lost reachability or instability of some destinations
- Input to traffic-engineering tools
 - Knowing the current routes in the network
- Workload for testing routers
 - Realistic message traces to play back to routers

BGP Monitoring: A Wish List

- Ideally: knowing what the router knows
 - All externally-learned routes
 - Before applying policy and selecting best route
- How to achieve this
 - Special monitoring session on routers that tells everything they have learned
 - Packet monitoring on all links with BGP sessions
- If you can’t do that, you could always do...
 - Periodic dumps of routing tables
 - BGP session to learn best route from router

Using Routers to Monitor BGP

- Talk to operational routers using SNMP or telnet at command line
- Establish a "passive" BGP session from a workstation running BGP software
- (+) BGP table dumps do not burden operational routers
- (+) Receives only best routes from BGP neighbor
- (+) Update dynamics captured
- (+) not restricted to interfaces provided by vendors

Collect BGP Data From Many Routers

- BGP is not a flooding protocol

BGP Table ("show ip bgp" at RouteViews)

<table>
<thead>
<tr>
<th>Network</th>
<th>Next Hop</th>
<th>Metric</th>
<th>LocPrf</th>
<th>Weight</th>
<th>Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0.0.0</td>
<td>205.215.45.50</td>
<td>0</td>
<td>4006</td>
<td>701</td>
<td>80 i</td>
</tr>
<tr>
<td></td>
<td>167.142.3.6</td>
<td>0</td>
<td>5056</td>
<td>701</td>
<td>80 i</td>
</tr>
<tr>
<td></td>
<td>157.22.5.7</td>
<td>0</td>
<td>715</td>
<td>701</td>
<td>80 i</td>
</tr>
<tr>
<td></td>
<td>195.219.96.239</td>
<td>0</td>
<td>8297</td>
<td>6453</td>
<td>701 i</td>
</tr>
<tr>
<td></td>
<td>195.211.29.254</td>
<td>0</td>
<td>5409</td>
<td>6461</td>
<td>3786 i</td>
</tr>
<tr>
<td></td>
<td>167.142.3.6</td>
<td>0</td>
<td>5056</td>
<td>6461</td>
<td>6461 i</td>
</tr>
<tr>
<td></td>
<td>195.219.96.239</td>
<td>0</td>
<td>8297</td>
<td>6461</td>
<td>6461 i</td>
</tr>
<tr>
<td></td>
<td>195.211.29.254</td>
<td>0</td>
<td>5409</td>
<td>6461</td>
<td>6461 i</td>
</tr>
<tr>
<td></td>
<td>39.184.112.0/20</td>
<td>929</td>
<td>3257</td>
<td>701</td>
<td>80 i</td>
</tr>
<tr>
<td></td>
<td>205.215.45.50</td>
<td>0</td>
<td>4006</td>
<td>6461</td>
<td>3786 i</td>
</tr>
<tr>
<td></td>
<td>195.66.225.254</td>
<td>0</td>
<td>5409</td>
<td>6461</td>
<td>3786 i</td>
</tr>
<tr>
<td></td>
<td>203.62.248.4</td>
<td>0</td>
<td>1221</td>
<td>3786</td>
<td>3786 i</td>
</tr>
<tr>
<td></td>
<td>167.142.3.6</td>
<td>0</td>
<td>5056</td>
<td>6461</td>
<td>6461 i</td>
</tr>
<tr>
<td></td>
<td>195.219.96.239</td>
<td>0</td>
<td>8297</td>
<td>6461</td>
<td>6461 i</td>
</tr>
<tr>
<td></td>
<td>195.211.29.254</td>
<td>0</td>
<td>5409</td>
<td>6461</td>
<td>6461 i</td>
</tr>
</tbody>
</table>

AS 80 is General Electric, AS 701 is UUNET, AS 7018 is AT&T
AS 3786 is DACOM (Korea), AS 1221 is Telstra
BGP Events

- Group of BGP updates that “belong together”
 - Same IP prefix, originating AS, or AS_PATH
- Updates that are “close” together in time
 - Maximum spacing between packets (e.g., 30 sec)
 - E.g.: events 2 and 4 are separated in time

Assignment #4

Due Dean’s Date

Measurement Analysis

- Two data sets
 - Netflow traffic measurements
 - BGP update messages and routing tables
- Traffic analysis
 - Packet and flow sizes
 - Application break-down
 - Popularity of traffic sources
- Routing analysis
 - Frequency of update messages by IP prefixes
 - Dynamics of BGP convergence

Measurement Analysis

- Parsing the data
- Extracting relevant fields
- Combining data across measurement records
- Generating tables of results
- Plotting results (e.g., Gnuplot, Excel, Matlab)
- Understanding the Internet better
- Use any languages and tools
 - And work with a partner

Conclusions

- Measurement is crucial to network operations
 - Measure, model, control
 - Detect, diagnose, fix
- Network measurement is challenging
 - Large volume of measurement data
 - Multi-dimensional data
- Great way to understand the Internet
 - Popular applications, traffic characteristics
 - Internet topology, routing dynamics