

Backbone Topology

3

Backbone Networks - Backbone networks - Multiple Points-of-Presence (PoPs) - Lots of communication between PoPs - Accommodate traffic demands and limit delay

Points-of-Presence (PoPs) Inter-PoP links Long distances High bandwidth Intra-PoP links Short cables between racks or floors Aggregated bandwidth Links to other networks Wide range of media and bandwidth

Where to Locate Nodes and Links

- Placing Points-of-Presence (PoPs)
 - Large population of potential customers
 - Other providers or exchange points
 - Cost and availability of real-estate
 - Mostly in major metropolitan areas ("NFL cities")
- Placing links between PoPs
 - Already fiber in the ground
 - Needed to limit propagation delay
 - Needed to handle the traffic load

Peering Customer B · Exchange traffic between customers - Settlement-free Provider B · Diverse peering locations multiple peering points - Both coasts, and middle · Comparable capacity at all peering points Provider A - Can handle even load Customer A

Combining Intradomain and Interdomain Routing

Intradomain Routing

- · Compute shortest paths between routers
 - Router C takes path C-F-A to router A
- Using link-state routing protocols
 - E.g., OSPF, IS-IS

10

Interdomain Routing

- Learn paths to remote destinations
 - AT&T learns two paths to Yale
- Applies local policies to select a best route

An AS is Not a Single Node

- · Multiple routers in an AS
 - Need to distribute BGP information within the AS
 - Internal BGP (iBGP) sessions between routers

Internal BGP and Local Preference • Both routers prefer path through AS 100 • ... even though right router learns external path

Interdomain Routing Policy

19

Selecting a Best Path

- Routing Information Base
 - Store all BGP routes for each destination prefix
 - Withdrawal: remove the route entry
 - Announcement: update the route entry
- · BGP decision process
 - Highest local preference
 - Shortest AS path
 - Closest egress point
 - Arbitrary tie break

20

Import Policy: Local Preference

- Favor one path over another
 - Override the influence of AS path length
- Example: prefer customer over peer

Import Policy: Filtering

- · Discard some route announcements
 - Detect configuration mistakes and attacks
- Examples on session to a customer
 - Discard route if prefix not owned by the customer
 - Discard route with other large ISP in the AS path

Export Policy: Filtering

- · Discard some route announcements
 - Limit propagation of routing information
- Examples
 - Don't announce routes from one peer to another
 - Don't announce routes for management hosts

Export Policy: Attribute Manipulation

- · Modify attributes of the active route
 - To influence the way other ASes behave
- Example: AS prepending
 - Artificially inflate AS path length seen by others
 - Convince some ASes to send traffic another way

Business Relationships

- Common relationships
 - Customer-provider
 - Peer-peer
 - Backup, sibling, ...
- · Implementing in BGP
 - Import policy
 - Ranking customer routes over peer routes
 - Export policy
 - Export only customer routes to peers and providers

BGP Policy Configuration

- Routing policy languages are vendor-specific
 - Not part of the BGP protocol specification
 - Different languages for Cisco, Juniper, etc.
- Still, all languages have some key features
 - List of clauses matching on route attributes
 - ... and discarding or modifying the matching routes
- · Configuration done by human operators
 - Implementing the policies of their AS
 - Business relationships, traffic engineering, security

Backbone Traffic Engineering

27

Routing With "Static" Link Weights

- · Routers flood information to learn topology
 - Determine "next hop" to reach other routers...
 - Compute shortest paths based on link weights
- · Link weights configured by network operator

Setting the Link Weights

- How to set the weights
 - Inversely proportional to link capacity?
 - Proportional to propagation delay?
 - Network-wide optimization based on traffic?

Measure, Model, and Control

Network-wide
"what if" model

Topology/
Configuration

Measure

Operational network

control

Limitations of Shortest-Path Routing

- · Sub-optimal traffic engineering
 - Restricted to paths expressible as link weights
- · Limited use of multiple paths
 - Only equal-cost multi-path, with even splitting
- Disruptions when changing the link weights
 - Transient packet loss and delay, and out-of-order
- Slow adaptation to congestion
 - Network-wide re-optimization and configuration
- · Overhead of the management system

31

Constrained Shortest Path First

- Run a link-state routing protocol
 - Configurable link weights
 - Plus other metrics like available bandwidth
- · Constrained shortest-path computation
 - Prune unwanted links (e.g., not enough bandwidth)
 - Compute shortest path on the remaining graph

32

Constrained Shortest Path First

- · Signal along the path
 - Source router sends a message to pin the 3, bw=80 path to destination
 - Revisit decisions periodically, in case better options exist

Challenges for Backbone Networks

34

Challenges

- · Routing protocol scalability
 - Thousands of routers
 - Hundreds of thousands of address blocks
- Fast failover
 - Slow convergence disrupts user performance
 - Backup paths for faster recovery
 - E.g., backup path around a failed link

Challenges

- Router configuration
 - Adding customers, planned maintenance, traffic engineering, access control, ...
 - Manual configuration is very error prone
- Measurement
 - Measuring traffic, performance, routing, etc.
 - To detect attacks, outages, and anomalies
 - To drive traffic-engineering decisions

36

Challenges

- Diagnosing performance problems
 - Incomplete control and visibility
 - Combining measurement data
- Security
 - Defensive packet and route filtering
 - Detecting and blocking denial-of-service attacks
 - DNS security, detecting and blocking spam, etc.
- New services
 - IPv6, IPTV, ...

37

Conclusions

- Backbone networks
 - Transit service for customers
 - Glue that holds the Internet together
- Routing challenges
 - Interdomain routing policy
 - Intradomain traffic engineering
- Next time
 - Cellular data networks (guest lecture)

8