Data Center Networks

Jennifer Rexford
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Cloud Computing

• Elastic resources
 – Expand and contract resources
 – Pay-per-use
 – Infrastructure on demand
• Multi-tenancy
 – Multiple independent users
 – Security and resource isolation
 – Amortize the cost of the (shared) infrastructure
• Flexible service management

Cloud Service Models

• Software as a Service
 – Provider licenses applications to users as a service
 – E.g., customer relationship management, e-mail, ..
 – Avoid costs of installation, maintenance, patches, ..
• Platform as a Service
 – Provider offers platform for building applications
 – E.g., Google’s App-Engine
 – Avoid worrying about scalability of platform

Cloud Service Models

• Infrastructure as a Service
 – Provider offers raw computing, storage, and network
 – E.g., Amazon’s Elastic Computing Cloud (EC2)
 – Avoid buying servers and estimating resource needs
Enabling Technology: Virtualization

- Multiple virtual machines on one physical machine
- Applications run unmodified as on real machine
- VM can migrate from one computer to another

Multi-Tier Applications

- Applications consist of tasks
 - Many separate components
 - Running on different machines
- Commodity computers
 - Many general-purpose computers
 - Not one big mainframe
 - Easier scaling

Multi-Tier Applications

Data Center Network

Virtual Switch in Server

Top-of-Rack Architecture

- Rack of servers
 - Commodity servers
 - And top-of-rack switch
- Modular design
 - Preconfigured racks
 - Power, network, and storage cabling
Aggregate to the Next Level

Modularity, Modularity, Modularity

• Containers

• Many containers

Data Center Network Topology

Capacity Mismatch

Data-Center Routing

Reminder: Layer 2 vs. Layer 3

• Ethernet switching (layer 2)
 – Cheaper switch equipment
 – Fixed addresses and auto-configuration
 – Seamless mobility, migration, and failover

• IP routing (layer 3)
 – Scalability through hierarchical addressing
 – Efficiency through shortest-path routing
 – Multipath routing through equal-cost multipath

• So, like in enterprises...
 – Connect layer-2 islands by IP routers
Case Study: Performance Diagnosis in Data Centers

http://www.eecs.berkeley.edu/~minlanyu/writeup/nsdi11.pdf

Challenges of Datacenter Diagnosis

- **Multi-tier applications**
 - Hundreds of application components
 - Tens of thousands of servers
- **Evolving applications**
 - Add new features, fix bugs
 - Change components while app is still in operation
- **Human factors**
 - Developers may not understand network well
 - Nagle’s algorithm, delayed ACK, etc.

Diagnosing in Today’s Data Center

Problems of Different Logs

TCP Statistics

- **Instantaneous snapshots**
 - #Bytes in the send buffer
 - Congestion window size, receiver window size
 - Snapshots based on random sampling
- **Cumulative counters**
 - #FastRetrans, #Timeout
 - RTT estimation: #SampleRTT, #SumRTT
 - RwinLimitTime
 - Calculate difference between two polls
Identifying Performance Problems

- Not any other problems
- Send buffer is almost full
- #Fast retransmission
- #Timeout
- RwinLimitTime
- Delayed ACK
 \[\frac{\text{diff}(\text{SumRTT})}{\text{diff}(\text{SampleRTT})} > \text{MaxDelay} \]

SNAP Architecture

At each host for every connection

- Collect data
- Performance Classifier
- Direct access to OS
 - Polling per-connection statistics:
 - Snapshots (bytes in send buffer)
 - Cumulative counters (#FastRetranss)
 - Adaptive tuning of polling rate

SNAP Architecture

At each host for every connection

- Collect data
- Performance Classifier
- Cross-connection correlation
- Direct access to data center configurations
 - Input
 - Topology, routing information
 - Mapping from connections to processes/apps
 - Correlate problems across connections
 - Sharing the same switch/link, app code

SNAP Deployment

- Production data center
 - 8K machines, 700 applications
 - Ran SNAP for a week, collected petabytes of data
- Identified 15 major performance problems
 - Operators: Characterize key problems in data center
 - Developers: Quickly pinpoint problems in app software, network stack, and their interactions

Characterizing Perf. Limitations

<table>
<thead>
<tr>
<th>#Apps that are limited for > 50% of the time</th>
</tr>
</thead>
</table>
| Sender App
| 551 Apps |
| Send Buffer
| 1 App |
| Network
| 6 Apps |
| Receiver
| 144 Apps |

- Bottlenecked by CPU, disk, etc.
- Slow due to app design (small writes)
- Send buffer not large enough
- Fast retransmission
- Timeout
- Not reading fast enough (CPU, disk, etc.)
- Not ACKing fast enough (Delayed ACK)
Delayed ACK
- Delayed ACK caused significant problems
 - Delayed ACK was used to reduce bandwidth usage and server interruption

Diagnosing Delayed ACK with SNAP
- Monitor at the right place
 - Scalable, low overhead data collection at all hosts
- Algorithms to identify performance problems
 - Identify delayed ACK with OS information
- Correlate problems across connections
 - Identify the apps with significant delayed ACK issues
- Fix the problem with operators and developers
 - Disable delayed ACK in data centers

Conclusion
- Cloud computing
 - Major trend in IT industry
 - Today’s equivalent of factories
- Data center networking
 - Regular topologies interconnecting VMs
 - Mix of Ethernet and IP networking
- Modular, multi-tier applications
 - New ways of building applications
 - New performance challenges

Load Balancing
- Spread load over server replicas
 - Present a single public address (VIP) for a service
 - Direct each request to a server replica

Wide-Area Network
- DNS-based site selection
- Internet
- Clients
- Servers
- Data Centers
Wide-Area Network: Ingress Proxies

Servers

Data Centers

Routers

Servers

Proxies

Clients

Servers

Router

Proxies