Multimedia Streaming

Jennifer Rexford
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Challenges for Media Streaming

• Large volume of data
 — Many sound or image samples per second
• Volume of data may vary over time
 — Due to compression of the data
• Cannot tolerate much delay
 — For interactive applications (e.g., VoIP and gaming)
• Cannot tolerate much variation in delay
 — Once playout starts, need to keep playing
• Though some loss is acceptable

Digital Audio and Video Data

Audio Examples

• Speech
 — Sampling rate: 8000 samples/second
 — Sample size: 8 bits per sample
 — Rate: 64 kbps

 • Compact Disc (CD)
 — Sampling rate: 44,100 samples/sec
 — Sample size: 16 bits per sample
 — Rate: 705.6 kbps for mono,
 1.411 Mbps for stereo

Digital Audio

• Sampling the analog signal
 — Sample at some fixed rate
 — Each sample is an arbitrary real number
• Quantizing each sample
 — Round each sample to one of a finite # of values
 — Represent each sample in a fixed number of bits

Audio Compression

• Audio data requires too much bandwidth
 — Speech: 64 kbps is too high for some connections
 — Stereo music: 1.411 Mbps exceeds most access rates
• Compression to reduce the size
 — Remove redundancy, and details user don’t perceive
• Example audio formats
 — Speech: GSM (13 kbps), G.729 (8 kbps), and G.723.3 (6.4 and 5.3 kbps)
 — Stereo music: MPEG 1 layer 3 (MP3) at 96 kbps, 128 kbps, and 160 kbps
Digital Video

- **Sampling the analog signal**
 - Sample images at fixed rate (e.g., 30 times per sec)
- **Quantizing each sample**
 - Representing an image as array of picture elements
 - Each pixel is a mix of colors (red, green, and blue)
 - E.g., 24 bits, with 8 bits per color

Video Compression: Within Image

- **Image compression**
 - Exploit spatial redundancy (e.g., regions of same color)
 - Exploit aspects humans tend not to notice
- **Common image compression formats**
 - Joint Pictures Expert Group (JPEG)
 - Graphical Interchange Format (GIF)

Video Compression: Across Images

- **Compression across images**
 - Exploit temporal redundancy across images
- **Common video compression formats**
 - MPEG 1: CD-ROM quality video (1.5 Mbps)
 - MPEG 2: high-quality DVD video (3-6 Mbps)

Streaming Over the Internet

Transferring Audio and Video Data

- **Simplest case**: just like any other file
 - Audio and video data stored in a file
 - File downloaded using conventional protocol
 - Playback does not overlap with data transfer
- **A variety of more interesting scenarios**
 - Live vs. pre-recorded content
 - Interactive vs. non-interactive
 - Single receiver vs. multiple receivers

Streaming Stored Audio and Video

- **Client-server system**
 - Server stores the audio and video files
 - Clients request files, play them as they download, and perform VCR-like functions (e.g., rewind, pause)
- **Playing data at the right time**
 - Server divides the data into segments
 - ... and labels each segment with frame id
- **Avoiding starvation at the client**
 - The data must arrive quickly enough
Playout Buffer

- **Client buffer**
 - Store the data as it arrives from the server
 - Play data for the user in a continuous fashion

- **Playout delay**
 - Client typically waits a few seconds to start playing
 - ... to allow some data to build up in the buffer

Requirements for Data Transport

- **Delay**
 - Some small delay at the beginning is acceptable
 - E.g., start-up delays of a few seconds are okay

- **Jitter**
 - Variability of delay within the same packet stream
 - Client cannot tolerate high variation if buffer starves

- **Loss**
 - Small amount of missing data is not disruptive
 - Retransmitting lost packet may take too long anyway

Streaming From Web Servers

- **Data stored in a file**
 - Audio: an audio file
 - Video: interleaving of audio and images in a file

- **HTTP request-response**
 - TCP connection between client and server
 - Client HTTP request and server HTTP response

- **Client invokes the media player**
 - Content-type indicates encoding
 - Browser launches media player
 - Media player renders file

Initiating Streams from Web Servers

- **Avoid passing all data through the Web browser**
 - Web server returns a meta file describing the object
 - Browser launches media player and passes meta file
 - Player sets up its own connection to the Web server

Using a Streaming Server

- **Avoiding the use of HTTP (and perhaps TCP, too)**
 - Web server returns a meta file describing the object
 - Player requests the data using a different protocol
TCP is Not a Good Fit

- Reliable delivery
 - Retransmission of lost packets may not be useful
- Adapting the sending rate
 - Slowing down after loss may cause starve client
- Protocol overhead
 - 20-byte TCP header is large for audio samples
 - ACKing every other packet is a lot of overhead

Better Ways of Transporting Data

- User Datagram Protocol (UDP)
 - No automatic retransmission of lost packets
 - No automatic adaptation of sending rate
 - Smaller packet header
- UDP leaves many things to the application
 - When to transmit the data
 - Whether to retransmit lost data
 - Whether to adapt the sending rate
 - ... or adapt quality of the audio/video encoding

Recovering From Packet Loss

- Loss is defined in a broader sense
 - Does a packet arrive in time for playback?
 - A packet that arrives late is as good as lost
- Selective retransmission
 - Sometimes retransmission is acceptable
 - E.g., if client has not already started playing data
 - Data can be retransmitted within time constraint
- Could do Forward Error Correction (FEC)
 - Send redundant info so receiver can reconstruct

YouTube: HTTP, TCP, and Flash

- Flash videos
 - All uploaded videos converted to Flash format
 - Nearly every browser has a Flash plug-in
 - ... avoids need for users to install players
- HTTP/TCP
 - Implemented in every browser
 - Easily gets through most firewalls
- Keep It Simple, Stupid
 - Simplicity more important than video quality

Interactive Audio and Video

- Two or more users interacting
 - Telephone call, video conference, video game
- Strict delay constraints
 - Delays over 150-200 msec are very noticeable
 - ... delays over 400 msec are a disaster for voice
- Much harder than streaming applications
 - Receiver cannot introduce much playout delay
 - Difficult if network doesn’t guarantee performance

Quality of Interactive Applications

- The application can help
 - Good audio compression algorithms
 - Forward error correction
 - Adaptation to the available bandwidth
- But, ultimately the network is a major factor
 - Long propagation delay?
 - High congestion?
 - Disruptions during routing changes?
Multicast

- Many receivers
 - Receiving the same content
- Applications
 - Video conferencing
 - Online gaming
 - IP television (IPTV)
 - Financial data feeds

Iterated Unicast

- Unicast message to each recipient
- Advantages
 - Simple to implement
 - No modifications to network
- Disadvantages
 - High overhead on sender
 - Redundant packets on links
 - Sender must maintain list of receivers

IP Multicast

- Embed receiver-driven tree in network layer
 - Sender sends a single packet to the group
 - Receivers “join” and “leave” the tree
- Advantages
 - Low overhead on the sender
 - Avoids redundant network traffic
- Disadvantages
 - Control-plane protocols for multicast groups
 - Overhead of duplicating packets in the routers

Multicast Tree

Single vs. Multiple Senders

- Source-based tree
 - Separate tree for each sender
 - Tree is optimized for that sender
 - But, requires multiple trees for multiple senders
- Shared tree
 - One common tree
 - Spanning tree that reaches all participants
 - Single tree may be inefficient
 - But, avoids having many different trees
Multicast Addresses

- Multicast “group” defined by IP address
 - Multicast addresses look like unicast addresses
 - 224.0.0.0 to 239.255.255
- Using multicast IP addresses
 - Sender sends to the IP address
 - Receivers join the group based on IP address
 - Network sends packets along the tree

Example Multicast Protocol

- Receiver sends a “join” messages to the sender
 - And grafts to the tree at the nearest point

IP Multicast is Best Effort

- Sender sends packet to IP multicast address
 - Loss may affect multiple receivers

Challenges for Reliable Multicast

- Send an ACK, much like TCP?
 - ACK-implosion if all destinations ACK at once
 - Source does not know # of destinations
- How to retransmit?
 - To all? One bad link effect entire group
 - Only where losses? Loss near sender makes retransmission as inefficient as replicated unicast
 - Negative acknowledgments more common

Scalable Reliable Multicast

- Data packets sent via IP multicast
 - Data includes sequence numbers
- Upon packet failure
 - If failures relatively rare, use Negative ACKs (NAKs) instead: “Did not receive expected packet”
 - Sender issues heartbeats if no real traffic. Receiver knows when to expect (and thus NAK)

Handling Failure in SRM

- Receiver multicasts a NAK
 - Or send NAK to sender, who multicasts confirmation
- Scale through NAK suppression
 - If received a NAK or NCF, don’t NAK yourself
 - Add random delays before NAK’ing
- Repair through packet retransmission
 - From initial sender
 - From designated local repairer
Conclusions

- Digital audio and video
 - Increasingly popular media on the Internet
 - Video on demand, VoIP, online gaming, IPTV...
- Many challenges
 - Best-effort network vs. real-time applications
 - Unicast routing vs. multi-party applications
- Friday’s precept
 - Hashing and partitioning to balance load