Multimedia Streaming

Jennifer Rexford

COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Digital Audio and Video Data

Challenges for Media Streaming

Large volume of data
— Many sound or image samples per second

Volume of data may vary over time
— Due to compression of the data

Cannot tolerate much delay

— For interactive applications (e.g., VolP and gaming)

Cannot tolerate much variation in delay
— Once playout starts, need to keep playing
* Though some loss is acceptable

Digital Audio
* Sampling the analog signal
— Sample at some fixed rate
— Each sample is an arbitrary real number
* Quantizing each sample
— Round each sample to one of a finite # of values
— Represent each sample in a fixed number of bits

> ﬁ 4 bit representation
6 U (values 0-15)
4 oL)

Audio Examples

* Speech
— Sampling rate: 8000 samples/second
— Sample size: 8 bits per sample Ay
— Rate: 64 kbps i“‘\
.#E\

* Compact Disc (CD)
— Sampling rate: 44,100 samples/sec
— Sample size: 16 bits per sample

— Rate: 705.6 kbps for mono,
1.411 Mbps for stereo

Audio Compression

* Audio data requires too much bandwidth

— Speech: 64 kbps is too high for some connections

— Stereo music: 1.411 Mbps exceeds most access rates
* Compression to reduce the size

— Remove redundancy, and details user don’t perceive
* Example audio formats

— Speech: GSM (13 kbps), G.729 (8 kbps), and G.723.3
(6.4 and 5.3 kbps)

— Stereo music: MPEG 1 layer 3 (MP3) at 96 kbps, 128
kbps, and 160 kbps

Digital Video

* Sampling the analog signal
— Sample images at fixed rate (e.g., 30 times per sec)
* Quantizing each sample
— Representing an image as array of picture elements
— Each pixel is a mix of colors (red, green, and blue)
— E.g., 24 bits, with 8 bits per color

Video Compression: Within Image
* Image compression
— Exploit spatial redundancy (e.g., regions of same color)
— Exploit aspects humans tend not to notice
* Common image compression formats
— Joint Pictures Expert Group (JPEG)
— Graphical Interchange Format (GIF)

IT Training IT Training

1T T}'nig ing

Uncompressed: 167 KBGood quality: 46 KB Poor quality: 9 KB

Video Compression: Across Images

Compression across images

— Exploit temporal redundancy across images
Common video compression formats

— MPEG 1: CD-ROM quality video (1.5 Mbps)
— MPEG 2: high-quality DVD video (3-6 Mbps)

(S Sao){=Sanlet o

Streaming Over the Internet

10

Transferring Audio and Video Data

* Simplest case: just like any other file

— Audio and video data stored in a file

— File downloaded using conventional protocol

— Playback does not overlap with data transfer
* A variety of more interesting scenarios

— Live vs. pre-recorded content

— Interactive vs. non-interactive

— Single receiver vs. multiple receivers

Streaming Stored Audio and Video

* Client-server system
— Server stores the audio and video files

— Clients request files, play them as they download,
and perform VCR-like functions (e.g., rewind, pause)

* Playing data at the right time
— Server divides the data into segments ﬂ
— ... and labels each segment with frame id

* Avoiding starvation at the client
— The data must arrive quickly enough

Playout Buffer

* Client buffer
— Store the data as it arrives from the server
— Play data for the user in a continuous fashion

* Playout delay
— Client typically waits a few seconds to start playing
— ... to allow some data to build up in the buffer

client
buffer

V707 7
e | e
from =x)

network

=d to decompression
and playout
V7

L

prefetched
«— video —»

Influence of Playout Delay

packets
4

packets loss

generated

packets

received playout schedule

p-r

playout schedule
p'-r

| | | time

Requirements for Data Transport

* Delay

— Some small delay at the beginning is acceptable

— E.g., start-up delays of a few seconds are okay
* lJitter

— Variability of delay within the same packet stream

— Client cannot tolerate high variation if buffer starves
* Loss

— Small amount of missing data is not disruptive

— Retransmitting lost packet may take too long anyway

Streaming From Web Servers

* Data stored in a file

— Audio: an audio file
— Video: interleaving of audio and images in a file

* HTTP request-response

— TCP connection between client and server
— Client HTTP request and server HTTP response

* Client invokes the media player l

— Content-type indicates encoding
— Browser launches media player

L Media player renders file

client server

Initiating Streams from Web Servers

* Avoid passing all data through the Web browser
— Web server returns a meta file describing the object
— Browser launches media player and passes meta file

— Player sets up its own connection to the Web server

(1) HTTP requestiresponse
for meta file

(2) metafile

(3) audiovideo file
requested and sent over
HTTP

Using a Streaming Server

* Avoiding the use of HTTP (and perhaps TCP, too)
— Web server returns a meta file describing the object
— Player requests the data using a different protocol

(1) HTTP request/response
‘for presentation descripton file
(3) audio/video file -
requested and sent

client servers

(2) presentation
description file

TCP is Not a Good Fit

* Reliable delivery

— Retransmission of lost packets may not be useful
* Adapting the sending rate

— Slowing down after loss may cause starve client
* Protocol overhead

— 20-byte TCP header is large for audio samples

— ACKing every other packet is a lot of overhead

Better Ways of Transporting Data

» User Datagram Protocol (UDP)
— No automatic retransmission of lost packets
— No automatic adaptation of sending rate
— Smaller packet header
* UDP leaves many things to the application
— When to transmit the data
— Whether to retransmit lost data
— Whether to adapt the sending rate
— ... or adapt quality of the audio/video encoding

Recovering From Packet Loss

* Loss is defined in a broader sense
— Does a packet arrive in time for playback?
— A packet that arrives late is as good as lost
* Selective retransmission
— Sometimes retransmission is acceptable
— E.g., if client has not already started playing data
— Data can be retransmitted within time constraint
* Could do Forward Error Correction (FEC)
— Send redundant info so receiver can reconstruct

YouTube: HTTP, TCP, and Flash

* Flash videos
— All uploaded videos converted to Flash format
— Nearly every browser has a Flash plug-in
— ... avoids need for users to install players
* HTTP/TCP
— Implemented in every browser
— Easily gets through most firewalls
* Keep It Simple, Stupid

— Simplicity more important than video quality

Interactive Audio and Video

* Two or more users interacting
— Telephone call, video conference, video game
e Strict delay constraints
— Delays over 150-200 msec are very noticeable
— ... delays over 400 msec are a disaster for voice
* Much harder than streaming applications
— Receiver cannot introduce much playout delay
— Difficult if network doesn’t guarantee performance

Quality of Interactive Applications

* The application can help
— Good audio compression algorithms
— Forward error correction
— Adaptation to the available bandwidth

* But, ultimately the network is a major factor

— Long propagation delay?
— High congestion?
— Disruptions during routing changes?

24

Multicast

Multicast

* Many receivers
—Receiving the same content

Iterated Unicast

* Unicast message to each recipient

* Advantages unhicast
— Simple to implement

— No modifications to network @ D

* Disadvantages
— High overhead on sender
— Redundant packets on links
— Sender must maintain list of receivers

* Applications multicast
—Video conferencing ~
—Online gaming ['f, o .
—IP television (IPTV) ®— ~ O -
—Financial data feeds o ©

IP Multicast

* Embed receiver-driven tree in network layer
— Sender sends a single packet to the group
— Receivers “join” and “leave” the tree

multicast
* Advantages

O
— Low overhead on the sender = o

®—
— Avoids redundant network traffic \ O
o ©

Q

* Disadvantages
— Control-plane protocols for multicast groups
— Overhead of duplicating packets in the routers

Multicast Tree

Single vs. Multiple Senders

* Source-based tree

— Separate tree for
each sender

* Shared tree
— One common tree
— Spanning tree that
— Tree is optimized for reaches all
that sender participants
— But, requires — Single tree may be
multiple trees for inefficient

multiple senders — But, avoids having

many different trees

Multicast Addresses

* Multicast “group” defined by IP address
— Multicast addresses look like unicast addresses
—224.0.0.0 to 239.255.255.255
* Using multicast IP addresses
— Sender sends to the IP address
— Receivers join the group based on IP address
— Network sends packets along the tree

Example Multicast Protocol

* Receiver sends a “join” messages to the sender
— And grafts to the tree at the nearest point

IP Multicast is Best Effort

* Sender sends packet to IP multicast address
— Loss may affect multiple receivers

Challenges for Reliable Multicast
* Send an ACK, much like TCP?

— ACK-implosion if all destinations ACK at once
— Source does not know # of destinations

* How to retransmit?
—To all? One bad link effects entire group

— Only where losses? Loss near sender makes
retransmission as inefficient as replicated unicast

* Negative acknowledgments more common

Scalable Reliable Multicast

* Data packets sent via IP multicast
— Data includes sequence numbers
* Upon packet failure

— If failures relatively rare, use Negative ACKs (NAKs)
instead: “Did not receive expected packet”

— Sender issues heartbeats if no real traffic. Receiver
knows when to expect (and thus NAK)

Handling Failure in SRM

* Receiver multicasts a NAK

— Or send NAK to sender, who multicasts confirmation
* Scale through NAK suppression

— If received a NAK or NCF, don’t NAK yourself

— Add random delays before NAK’ing
* Repair through packet retransmission

— From initial sender

— From designated local repairer

Conclusions

Digital audio and video

— Increasingly popular media on the Internet

— Video on demand, VolP, online gaming, IPTV...
Many challenges

— Best-effort network vs. real-time applications
— Unicast routing vs. multi-party applications
Friday’s precept

— Hashing and partitioning to balance load

