Routing Convergence

Jennifer Rexford
COS 461: Computer Networks
Lectures: MW 10-10:50am in Architecture N101
http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Routing Changes

- Topology changes: new route to the same place
- Host mobility: route to a different place

Two Types of Topology Changes

- Planned
 – Maintenance: shut down a node or link
 – Energy savings: shut down a node or link
 – Traffic engineering: change routing configuration
- Unplanned
 – Failure
 – E.g., fiber cut, faulty equipment, power outage, software bugs, ...

Detecting Topology Changes

- Beaconing
 – Periodic “hello” messages in both directions
 – Detect a failure after a few missed “hellos”
 – “hello”
- Performance trade-offs
 – Detection delay
 – Overhead on link bandwidth and CPU
 – Likelihood of false detection

Routing Convergence: Link-State Routing
Convergence

- **Control plane**
 - All nodes have consistent information
- **Data plane**
 - All nodes forward packets in a consistent way

Transient Disruptions

- **Detection delay**
 - A node does not detect a failed link immediately
 - ... and forwards data packets into a “blackhole”
 - Depends on timeout for detecting lost hellos

Transient Disruptions

- **Inconsistent link-state database**
 - Some routers know about failure before others
 - Inconsistent paths cause transient forwarding loops

Convergence Delay

- **Sources of convergence delay**
 - Detection latency
 - Updating control-plane information
 - Computing and install new forwarding tables
- **Performance during convergence period**
 - Lost packets due to blackholes and TTL expiry
 - Looping packets consuming resources
 - Out-of-order packets reaching the destination
- **Very bad for VoIP, online gaming, and video**

Reducing Convergence Delay

- **Faster detection**
 - Smaller hello timers, better link-layer technologies
- **Faster control plane**
 - Flooding immediately
 - Sending routing messages with high-priority
- **Faster computation**
 - Faster processors, and incremental computation
- **Faster forwarding-table update**
 - Data structures supporting incremental updates

Slow Convergence in Distance-Vector Routing
Distance Vector: Link Cost Changes

- Link cost decreases and recovery
 - Node updates the distance table
 - If cost change in least cost path, notify neighbors

"good news travels fast"

Distance Vector: Poison Reverse

- If Z routes through Y to get to X:
 - Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
 - Still, can have problems in larger networks

Redefining Infinity

- Avoid “counting to infinity”
 - By making “infinity” smaller!
- Routing Information Protocol (RIP)
 - All links have cost 1
 - Valid path distances of 1 through 15
 - ... with 16 representing infinity
- Used mainly in small networks

Path-Vector Routing

- Extension of distance-vector routing
 - Support flexible routing policies
 - Avoid count-to-infinity problem
- Key idea: advertise the entire path
 - Distance vector: send distance metric per dest d
 - Path vector: send the entire path for each dest d

Reducing Convergence Time
With Path-Vector Routing
(e.g., Border Gateway Protocol)
Faster Loop Detection
- Node can easily detect a loop
 - Look for its own node identifier in the path
 - E.g., node 1 sees itself in the path “3, 2, 1”
- Node can simply discard paths with loops
 - E.g., node 1 simply discards the advertisement

- **BGP Session Failure**
 - BGP runs over TCP
 - BGP only sends updates when changes occur
 - TCP doesn’t detect lost connectivity on its own
 - Detecting a failure
 - Keep-alive: 60 seconds
 - Hold timer: 180 seconds
 - Reacting to a failure
 - Discard all routes learned from neighbor
 - Send new updates for any routes that change

- **Routing Change: Before and After**
- **Routing Change: Path Exploration**
 - AS 1
 - Delete the route (1,0)
 - Switch to next route (1,2,0)
 - Send route (1,2,0) to AS 3
 - AS 3
 - Sees (1,2,0) replace (1,0)
 - Compares to route (2,0)
 - Switches to using AS 2

- **Routing Change: Path Exploration**
 - Initial situation
 - All ASes use direct path
 - Destination 0 dies
 - All ASes lose direct path
 - All switch to longer paths
 - Eventually withdrawn
 - E.g., AS 2
 - (2,0) → (2,1,0) → (2,3,0) → (2,1,3,0) → null
 - **BGP Converges Slowly**
 - Path vector avoids count-to-infinity
 - But, ASes still must explore many alternate paths
 - … to find the highest-ranked available path
 - Fortunately, in practice
 - Most popular destinations have stable BGP routes
 - Most instability lies in a few unpopular destinations
 - Still, lower BGP convergence delay is a goal
 - Can be tens of seconds to tens of minutes
 - High for important interactive applications
BGP Instability

Stable Paths Problem (SPP) Instance
- **Node**
 - BGP-speaking router
 - Node 0 is destination
- **Edge**
 - BGP adjacency
- **Permitted paths**
 - Set of routes to 0 at each node
 - Ranking of the paths

Solution to a Stable Paths Problem
- **Solution**
 - Path assignment per node
 - Can be the "null" path
- **If node u has path uwP**
 - (u, w) is an edge in the graph
 - Node w is assigned path wP
- **Each node is assigned**
 - Highest ranked path consistent with its neighbors

SPP May Have Multiple Solutions
- **First solution**
- **Second solution**

An SPP May Have No Solution

Avoiding BGP Instability
- **Detecting conflicting policies**
 - Computationally expensive
 - Requires too much cooperation
- **Detecting oscillations**
 - Observing the repetitive BGP routing messages
- **Restricted routing policies and topologies**
 - Policies based on business relationships
Customer-Provider Relationship

- Customer pays provider for access to Internet
 - Provider exports its customer routes to everybody
 - Customer exports provider routes only to its customers

Peer-Peer Relationship

- Peers exchange traffic between their customers
 - AS exports only customer routes to a peer
 - AS exports a peer’s routes only to its customers

Hierarchical AS Relationships

- Provider-customer graph is directed and acyclic
 - If u is a customer of v and v is a customer of w
 - ... then w is not a customer of u

Valid and Invalid Paths

- Valid paths: “1 2 d” and “7 d”
- Invalid path: “5 8 d”
- Valid paths: “6 4 3 d” and “8 5 d”
- Invalid paths: “6 5 d” and “1 4 3 d”

Local Control, Global Stability

- Route export
 - Don’t export routes learned from a peer or provider
 - ... to another peer or provider
- Global topology
 - Provider-customer relationship graph is acyclic
 - E.g., my customer’s customer is not my provider
- Route selection
 - Prefer routes through customers
 - ... over routes through peers and providers
- Guaranteed to converge to unique, stable solution

Conclusion

- The only constant is change
 - Planned topology and configuration changes
 - Unplanned failure and recovery
- Routing-protocol convergence
 - Transient period of disagreement
 - Blackholes, loops, and out-of-order packets
- Routing instability
 - Permanent conflicts in routing policy
 - Leading to bi-stability or oscillation