Queue Management
Jennifer Rexford
COS 461: Computer Networks
Lectures: MW 10:10-10:50am in Architecture N101
http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Monday: Congestion Control
What can the end-points do to collectively to make good use of shared underlying resources?

Today: Queue Management
What can the individual links do to make good use of shared underlying resources?

Packet Queues

Router

Line Cards (Interface Cards, Adaptors)
• Packet handling
 – Packet forwarding
 – Buffer management
 – Link scheduling
 – Packet filtering
 – Rate limiting
 – Packet marking
 – Measurement
Packet Switching and Forwarding

Queue Management Issues
• Scheduling discipline
 – Which packet to send?
 – Some notion of fairness? Priority?
• Drop policy
 – When should you discard a packet?
 – Which packet to discard?
• Goal: balance throughput and delay
 – Huge buffers minimize drops, but add to queuing delay (thus higher RTT, longer slow start, …)

FIFO Scheduling and Drop-Tail
• Access to the bandwidth: first-in first-out queue
 – Packets only differentiated when they arrive

 • Access to the buffer space: drop-tail queuing
 – If the queue is full, drop the incoming packet

 Early Detection of Congestion

Bursty Loss From Drop-Tail Queuing
• TCP depends on packet loss
 – Packet loss is indication of congestion
 – TCP additive increase drives network into loss
• Drop-tail leads to bursty loss
 – Congested link: many packets encounter full queue
 – Synchronization: many connections lose packets at once

Slow Feedback from Drop Tail
• Feedback comes when buffer is completely full
 – … even though the buffer has been filling for a while
• Plus, the filling buffer is increasing RTT
 – … making detection even slower
• Better to give early feedback
 – Get 1-2 connections to slow down before it’s too late!
Random Early Detection (RED)

- Router notices that queue is getting full
 - ... and randomly drops packets to signal congestion
- Packet drop probability
 - Drop probability increases as queue length increases
 - Else, set drop probability $f(\text{avg queue length})$

Properties of RED

- Drops packets before queue is full
 - In the hope of reducing the rates of some flows
- Drops packet in proportion to each flow’s rate
 - High-rate flows selected more often
- Drops are spaced out in time
 - Helps desynchronize the TCP senders
- Tolerant of burstiness in the traffic
 - By basing the decisions on average queue length

Problems With RED

- Hard to get tunable parameters just right
 - How early to start dropping packets?
 - What slope for increase in drop probability?
 - What time scale for averaging queue length?
- RED has mixed adoption in practice
 - If parameters aren’t set right, RED doesn’t help
- Many other variations in research community
 - Names like “Blue” (self-tuning), “FRED” ...

Feedback: From Loss to Notification

- Early dropping of packets
 - Good: gives early feedback
 - Bad: has to drop the packet to give the feedback
- Explicit Congestion Notification (ECN)
 - Router marks the packet with an ECN bit
 - Sending host interprets as a sign of congestion
 - Requires participation of hosts and the routers

First-In First-Out Scheduling

- First-in first-out scheduling
 - Simple, but restrictive
- Example: two kinds of traffic
 - Voice over IP needs low delay
 - E-mail is not that sensitive about delay
- Voice traffic waits behind e-mail

Link Scheduling
Strict Priority

- Multiple levels of priority
 - Always transmit high-priority traffic, when present
- Isolation for the high-priority traffic
 - Almost like it has a dedicated link
 - Except for (small) delay for packet transmission
- But, lower priority traffic may starve 😞

Weighted Fair Scheduling

- Weighted fair scheduling
 - Assign each queue a fraction of the link bandwidth
 - Rotate across queues on a small time scale
 - ![Diagram showing 50% red, 25% blue, 25% green]
- Work-conserving
 - Send extra traffic from one queue if others are idle

Implementation Trade-Offs

- FIFO
 - One queue, trivial scheduler
- Strict priority
 - One queue per priority level, simple scheduler
- Weighted fair scheduling
 - One queue per class, and more complex scheduler

Quality of Service Guarantees

Distinguishing Traffic

- Applications compete for bandwidth
 - VoIP and email sharing a link
 - E-mail traffic can cause congestion and losses
- Principle 1: Packet marking
 - So router can distinguish between classes
 - E.g., Type of Service (ToS) bits in IP header

Preventing Misbehavior

- Applications misbehave
 - VoIP sends packets faster than 1 Mbps
- Principle 2: Policing
 - Protect one traffic class from another
 - By enforcing a rate limit on the traffic
Subdividing Link Resources

- **Principle 3: Link scheduling**
 - Ensure each application gets its share
 - ... while (optionally) using any extra bandwidth
 - E.g., weighted fair scheduling

Reserving Resources, and Saying No

- **Traffic cannot exceed link capacity**
 - Deny access, rather than degrade performance
- **Principle 4: Admission control**
 - Application declares its needs in advance
 - Application denied if insufficient resources available

Quality of Service (QoS)

- **Guaranteed performance**
 - Alternative to best-effort delivery model
- **QoS protocols and mechanisms**
 - Packet classification and marking
 - Traffic shaping
 - Link scheduling
 - Resource reservation and admission control
 - Identifying paths with sufficient resources

Conclusions

- **Link resource allocation**
 - Buffer management
 - Link scheduling
- **Friday precept**
 - Practice exam questions on resource allocation
 - See six questions posted on syllabus page
- **Next week: routing dynamics**
 - Routing protocol convergence
 - Routing to mobile hosts