Course Announcements

- Get a Piazza account
 - http://piazza.com/class#spring2012/cos461
- See assignment #0 on socket programming
 - Posted on the course Web site
 - Due 11:59pm Thu Feb 16
 - Counts in course participation
- Friday precepts
 - P01: 10-10:50am in Friend 109 (Rob Kiefer)
 - P02: 11-11:50am in Friend 109 (Peng Sun)
 - P02A: 11-11:50am in Friend 108 (Xiaozhou Li)
Adaptors Communicating

- **Sending side**
 - Encapsulates packet in a frame
 - Adds error checking bits, flow control, etc.

- **Receiving side**
 - Looks for errors, flow control, etc.
 - Extracts datagram and passes to receiving node

Link-Layer Services

- **Encoding**
 - Represent the 0s and 1s
- **Framing**
 - Encapsulate packet into frame, adding header/trailer
- **Error detection**
 - Receiver detecting errors with checksums
- **Error correction**
 - Receiver optionally correcting errors
- **Flow control**
 - Pacing between sending and receiving nodes

Addresses

- **Medium Access Control Address**
 - **Identify the sending and receiving adapter**
 - Unique identifier for each network adapter
 - Identifies the intended receiver(s) of the frame
 - ... and the sender who sent the frame

Medium Access Control Address

- **MAC address** (e.g., 00-15-C5-49-04-A9)
 - Numerical address used within a link
 - Unique, hard-coded in the adapter when it is built
 - Flat name space of 48 bits
- **Hierarchical allocation**
 - **Blocks**: assigned to vendors (e.g., Dell) by the IEEE
 - **Adapters**: assigned by the vendor from its block
- **Broadcast address** (i.e., FF-FF-FF-FF-FF-FF)
 - Send the frame to all adapters

As an Aside: Promiscuous Mode

- **Normal adapter**: receives frames sent to
 - The local MAC address
 - Broadcast address FF-FF-FF-FF-FF-FF
- **Promiscuous mode**
 - Receive everything, independent of destination MAC
- **Useful for packet sniffing**
 - Network monitoring
 - E.g., wireshark, tcpdump
Why Not Just Use IP Addresses?

• Links can support *any* network protocol
 – Not just for IP (e.g., IPX, AppleTalk, X.25, …)
 – Different addresses on different kinds of links
• An adapter may move to a new location
 – So, cannot simply assign a static IP address
 – Instead, must reconfigure the adapter’s IP address
• Must identify the adapter during bootstrap
 – Need to talk to the adapter to assign it an IP address

Who Am I: Acquiring an IP Address

• Dynamic Host Configuration Protocol (DHCP)
 – Broadcast “I need an IP address, please!”
 – Response “You can have IP address 1.2.3.4.”

Who Are You: Discovering the Receiver

• Address Resolution Protocol (ARP)
 – Broadcast “who has IP address 1.2.3.6?”
 – Response “0C-C4-11-6F-E3-98 has 1.2.3.6!”

Sharing the Medium

Collisions

• Single shared broadcast channel
 – Avoid having multiple nodes speaking at once
 – Otherwise, collisions lead to garbled data

Multi-Access Protocol

• Divide the channel into pieces
 – In time
 – In frequency
• Take turns
 – Pass a token for the right to transmit
• Punt
 – Let collisions happen
 – … and detect and recover from them
Like Human Conversation...

- **Carrier sense**
 - Listen before speaking
 - ...and don’t interrupt!
- **Collision detection**
 - Detect simultaneous talking
 - ... and shut up!
- **Random access**
 - Wait for a random period of time
 - ... before trying to talk again!

Carrier Sense Multiple Access

- Listen for other senders
 - Then transmit your data
- Collisions can still occur
 - Propagation delay
 - Wasted transmission

CSMA/CD Collision Detection

- Detect collision
 - Abort transmission
 - Jam the link
- Wait random time
 - Transmit again
- Hard in wireless
 - Must receive data while transmitting

Comparing the Three Approaches

- **Channel partitioning**
 - Efficient and fair at high load
 - Inefficient at low load
- “Taking turns”
 - Eliminates empty slots without collisions
 - Vulnerable to failures (e.g., lost token)
- **Random access**
 - Efficient at low load
 - Collision overhead at high load

Ethernet

- Dominant wired LAN technology
- First widely used LAN technology
- Kept up with speed race: 10 Mbps – 40 Gbps
Ethernet Uses CSMA/CD
- **Carrier Sense:** wait for link to be idle
 - Channel idle: start transmitting
 - Channel busy: wait until idle
- **Collision Detection:** listen while transmitting
 - No collision: transmission is complete
 - Collision: abort transmission, and send jam signal
- **Random Access:** exponential back-off
 - After collision, wait random time before trying again
 - After \(m \)th collision, choose \(K \) randomly from \(\{0, \ldots, 2^m-1\} \)
 - ... and wait for \(K \cdot 512 \) bit times before trying again

Limitations on Ethernet Length
- **Latency depends on physical length of link**
 - Time to propagate a packet from one end to other
- **Suppose A sends a packet at time \(t \)**
 - And B sees an idle line at a time just before \(t+d \)
 - ... so B happily starts transmitting a packet
- **B detects a collision, and sends jamming signal**
 - But A doesn’t see collision till \(t+2d \)

Limitations on Ethernet Length
- **A needs to wait for time \(2d \) to detect collision**
 - So, A should keep transmitting during this period
 - ... and keep an eye out for a possible collision
- **Imposes restrictions on Ethernet**
 - Maximum length of the wire: 2500 meters
 - Minimum length of the packet: 512 bits (64 bytes)

Ethernet Frame Structure
- **Sending adapter encapsulates packet in frame**
 - **Preamble:** synchronization
 - Seven bytes with pattern 10101010, followed by one byte with pattern 10101011
 - Used to synchronize receiver, sender clock rates
 - **Addresses:** source and destination MAC addresses
 - Adaptor passes frame to network-level protocol
 - If destination is local MAC address or broadcast address
 - Otherwise, adapter discards frame
 - **Type:** indicates the higher layer protocol
 - Usually IP
 - But also Novell IPX, AppleTalk, ...
 - **CRC:** cyclic redundancy check

Unreliable, Connectionless Service
- **Connectionless**
 - No handshaking between send and receive adapter
- **Unreliable**
 - Receiving adapter doesn’t send ACKs or NACKs
 - Packets passed to network layer can have gaps
 - Gaps can be filled by transport protocol (e.g., TCP)
 - Otherwise, the application will see the gaps
Hubs and Switches

Physical Layer: Repeaters
- Distance limitation in local-area networks
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN
- Repeaters join LANs together
 - Analog electronic device
 - Continuously monitors electrical signals
 - Transmits an amplified copy

Physical Layer: Hubs
- Joins multiple input lines electrically
 - Designed to hold multiple line cards
 - Do not necessarily amplify the signal
- Very similar to repeaters
 - Also operates at the physical layer

Limitations of Repeaters and Hubs
- One large shared link
 - Each bit is sent everywhere
 - So, aggregate throughput is limited
- Cannot support multiple LAN technologies
 - Does not buffer or interpret frames
 - Can’t interconnect between different rates/formats
- Limitations on maximum nodes and distances
 - Shared medium imposes length limits
 - E.g., cannot go beyond 2500 meters on Ethernet

Link Layer: Bridges
- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate segment
- Each segment can carry its own traffic

Link Layer: Switches
- Typically connects individual computers
 - A switch is essentially the same as a bridge
 - ... though typically used to connect hosts
- Supports concurrent communication
 - Host A can talk to C, while B talks to D
Bridges/Switches: Traffic Isolation
- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate transmissions

Advantages Over Hubs/Repeaters
- Only forwards frames as needed
 - Avoid unnecessary load on segments
- Wider geographic span
 - Separate segments allow longer distances
- Improves privacy
 - Hosts can “snoop” traffic traversing their segment
 - ... but not all the rest of the traffic
- Can join segments using different technologies

Self Learning: Building the Table
- When a frame arrives
 - Inspect the source MAC address
 - Associate the address with the incoming interface
 - Store the mapping in the switch table
 - Use a timer to eventually forget the mapping

Self Learning: Handling Misses
- When frame arrives with unfamiliar destination
 - Forward the frame out all of the interfaces
 - ... except for the one where the frame arrived
 - Hopefully, this case won’t happen very often!

Summary: Multiple Layers
- Different devices switch different things
 - Network layer: packets (routers)
 - Link layer: frames (bridges and switches)
 - Physical layer: electrical signals (repeaters and hubs)

Conclusion
- Links
 - Connect two or more network adapters
 - ... each with a unique address
 - ... over a shared communication medium
- Coming next
 - Friday: “links” between application processes
 - Monday: network layer (IP)
- Get started
 - On assignment #0 on socket programming