Searching non-text information objects

Non-text digital objects

- Music
- Speech
- Images
- 3D models
- Video
- ?

First example method: color histogram

- k colors
- histogram: % pixels each color
- k×k matrix A of color similarity weights
- histogram defines feature vectors
- dist_{histo} $(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x}-\boldsymbol{y})^{t} A(\boldsymbol{x}-\boldsymbol{y})$

$$=\sum_{i=1}^{n}\sum_{j=1}^{n}a_{ij}(x_{i}-y_{i})(x_{j}-y_{j})$$

– cross-talk: quadratic terms needed
 • not Euclidean distance

color histograms: reducing complexity

- compute RED_{avg}, GREEN_{avg}, BLUE_{avg}
 over all pixels
- use to construct 3D-vector
- use Euclidean distance
- get close candidates
- examine close candidates with full histogram metric

color histograms: observations

- works for certain types of images – sunset canonical example
- color histogram global property
- this only small part of work: QBIC system, IBM, 1995

Second example method: a region-based representation

- · region-based features of images
- · query processed in same way as collection
- · space-conscious: use bit vectors
- levels of representation:
 - store bit vector for each region
 - store bit vector for each image
- get close candidates: compare image bit vectors
- compare top k candidates using region bit vectors

11

Processing images of collection & query • segment into homogeneous regions – 14 dimensional feature vectors • threshold and transform – high-dimensional bit vectors - store – XOR for distance between regions • build image feature vector – n region bit-vectors + weights ⇒ 1 m-dimensional real-valued image feature vector

- L₁ distance between feature vectors
- transform image vector
 one high-dimensional bit vector for image store
 12

Observations: region based · Example of one regional method - lots of research, lots of places! This method uses sampling heavily - produce bit vectors · Part of larger project - multiple media

- CASS, Princeton, 2004

15

Third example method: Combining simple ideas

- · Goals
 - reduce search space
 - reduce disk I/O cost
- Simple ideas
 - K-means clustering of image database
- B+ trees
- heuristic search limits
- · New ideas
 - search beyond cluster containing query image

16

- limit search within each cluster

Image representation

- · Inpute: non-texture RGB images
- Process
 - resize to uniform 128x128 pixels
 - transform to different color space
 - relate to human perception
 - Apply Daubechies wavelet tranformation
 - use several applications
 - · obtain 964 dimensional feature vector

17

Data space representation

- · Cluster data space using K-means
 - search for "most cost effective" K
 - cluster validity indexes · majority vote
- · Find cluster centroids
- · For each cluster build a B+ tree
 - B+ tree represent each image in cluster
 - search key for ith image in cluster is distance of feature vector of ith image to cluster center 18

Search space for query

- · don't search things know probably too far
- · don't limit search to just cluster containing query
- · Chose similarity threshhold c for data set
- search images in outer shell of cluster
 range d-c to d+c for d=distance guery to its centroid
- Same principle whether q in boundry of a cluster or not

but use different c : c_{same}, c_{diff}

Choosing c_{same} , c_{diff}

Initially

 c_{same} = avg. of distances all images to their centers c_{diff} = 0

20

- iteratively search for values give best gain

 factors in gain
 - improved average distance found
 - · reduced size of search space
 - · compared to K-means
 - with linear search bounding
 - shortest distance
 - largest search space

Observations

- dynamic capability of B+ trees
- · color based
- · no region analysis of images
- image representation and data space representation independent

"Integrating wavelets with clustering and indexing for effective content-based image retrieval" 2012

23

19

Fourth example method: Image ranking

- given similarity measures
- use PageRank style
 - define $\mathbf{v} = \alpha(1/n) + (1-\alpha)S\mathbf{v}$
 - where
 - n is the number of images to be ranked
 - S is a matrix of image-image similarities
 - column normalized, symmetric
 - \mathbf{v} is the vector of VisualRanks
 - α is the usual parameter

			matches
i and Baluja: Visuali	rank: Applying P	AGERANK TO L	ARGE-SCA
	TABLE 1 Relevancy Study	,	
	Helevancy Study	Ŷ	
'Irrelevant'' images p	er product query	VisualRank	Google
mong top 10 results		0.47	2.82
mong top 5 results		0.30	1.31
mong top 3 results		0.20	0.81

Image search: Commercial search engines

- Use everything you can afford to use
- Text still king!?