
1 

1 

Finding near-duplicate 
documents 

2 

Duplicate versus near duplicate 
documents 

•  Duplicate = identical? 
•  Near duplicate:   

small structural differences 
• not just content similarity 

•  define “small” 
– date change? 
– small edits? 
– metadata change? 
– other? 

3 

Applications 

•  creating collection 
–  indexing 

•  Crawling network 
•  Returning query results 

– cluster near duplicates;  return 1 
•  Plagiarism 

4 

Framework 

•  Algorithm to assign quantitative degree of 
similarity between documents 

•  Issues 
– What is basic token for documents? 

•  character 
•  word/term 

– What is threshold for “near duplicate”? 
– What are computational costs? 

5 

Classic document comparison 

•  Edit distance 
– count deletions, additions, substitutions to 

convert Doc1 into Doc2 
– can each action can have different cost 
– applications 

•  UNIX “diff” 
•  similarity of genetic sequences 

•  Edit distance algorithm 
– dynamic programming 
–  time O(m*n) for strings length m and n 

6 

Edit distance for collections 

•  token = word 
– compare other applications 

•  Cost is  O( Σ |Doci|*|Docj|) 
•  Right sense of similarity? 

i,j 



2 

7 

Addressing computation cost 
A general paradigm to find duplicates in N docs: 

1.  Define function f capturing contents of each 
document in one number 

“Hash function”, “signature”, “fingerprint” 
2.  Create <f(doci), ID of doci> pairs 
3.  Sort the pairs 
4.  Recognize duplicate or near-duplicate documents 

as having the same f value or f values within a small 
threshold  

Compare:  computing a similarity score on pairs of 
documents 

8 

Optimistic cost 
A general paradigm to find duplicates in N docs: 

1.  Define function f capturing contents of each 
document in one number     O(|doc|) 

“Hash function”, “signature”, “fingerprint” 
2.  Create <f(doci), ID of doci> pairs  O( Σi=1...N (|doci|) ) 
3.  Sort the pairs     O(N log N ) 
4.  Recognize duplicate or near-duplicate documents 

as having the same f value or f values within a small 
threshold          O(N) 

Compare:  computing a similarity score on pairs of 
documents 

9 

General paradigm: details 
1.  Define function f capturing contents of each document 

in one number 
“Hash function”, “signature”, “sketch”,  “fingerprint” 

2.  Create <f(doci), ID of doci> pairs 
3.  Sort the pairs 
4.  Recognize duplicate or near-duplicate 

documents as having the same f value or f 
values within a small threshold  

–  recognize exact duplicates: 
•  threshold = 0 
•  examine documents to verify duplicates 

–  recognize near-duplicates 
Problem with “small threshold” ? 10 

General paradigm: details 
4.  Recognize duplicate or near-duplicate documents as 

having the same f value or f values within a small 
threshold  

–  recognize exact duplicates: 
•  threshold = 0 
•  examine documents to verify duplicates 

–  recognize near-duplicates 
Problem with “small threshold” ? 

How deal with  

<1, D1> <1.01, D2> <1.02, D3> …..<1.99, D100>  

and threshold  .01  (using ≤ threshold) ? 

11 

“Syntactic clustering” 
We will look at this one example: 

        Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and 
Geoffrey Zweig, Syntactic Clustering of the Web  

        Sixth International WWW Conference, 1997.  

•  “syntactic similarity” versus semantic  
Sequences of words 

•  Finding near duplicates 
•  Doc = sequence of words   

Word = Token 
•  Uses sampling 
•  Similarity based on shingles 
•  Does compare documents 12 

Shingles 

•  A w-shingle is a contiguous subsequence 
of w words 

•  The w-shingling of doc D, S(D, w) is the 
set of unique w-shingles of D 



3 

13 

Similarity of docs with shingles 

 For fixed w, resemblance of docs A and B : 
r(A, B) = |S(A) ∩ S(B)|    /    |S(A) U S(B)|               

Jaccard coefficient 

•  For fixed w, containment of doc A in doc B : 
C(A, B) = |S(A) ∩ S(B)|    /    |S(A)|  

•  For fixed w, resemblance distance betwn docs A and B : 
D(A, B) = 1- r(A, B)   

Is a metric (triangle inequality) 

Note we are now comparing documents! 
14 

Example 
A: “a rose is red a rose is white”  
4-shingles: 

“a rose is red” 
“rose is red a” 
“is red a rose” 
“red a rose is” 
“a rose is white” 

B: “a rose is white a rose is red”  
4-shingles: 

“a rose is white” 
“rose is white a” 
“is white a rose” 
“white a rose is” 
“a rose is red” r(A, B) = 0.25 

15 

Sample of shingles   
Want to estimate r and/or  c 
Do this by calculating approximation on a sample of 

shingles for fixed w 

•  1-to-1 map each shingle to integer in fixed, large range R 
–  64-bit hash, R=[0, 264-1] 

•  Let Π be a random permutation from R to R 
•  For any S(D) define: 

H(D) =  Set of integer hash values corresponding to 
shingles in S(D) 

Π(D) = Set of permuted values in H(D) 
x(Π, D) = smallest integer in Π(D)  

16 

Sketch of shingles 
•  Let Π1, …, Πm be m random permutations R → 

R  
–  text:  m=20 

The sketch of doc D for Π1, …, Πm is 
ψ(D) = {x(Πi, D) | 1≤ i ≤ m } 

doc → set shingles → set integers 
 → m sets permuted integers 
   → m smallest integers: one per permutation  

Sketch is a sampling 

17 

Approximation of resemblance 

Theorem: 
For random permutation Π: 

r(A, B) = P ( x(Π, A) = x(Π, B) ) 

Estimate  P ( x(Π, A) = x(Π, B) ) as  
| ψ(A) ∩ ψ(B) | / m 

recall m is # permutations 

18 

Algorithm used (text’s version) 
1.  Calculate sketch ψ(Di) for every doc Di  

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection: 

i.  Produce list of <shingle value, docID> pairs for all 
shingle values x(Πk, Di) in the sketch for each doc.  

ii.  Sort the list by shingle value 
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which 

cti,j>0 
   This not linear-time for the list of docs for 

one shingle value 

3.  Build clusters of similar/almost identical docs 
Degree of similarity depends on threshold … 



4 

19 

Clustering 

1.  Define docs to be similar if approximate resemblance 
greater than  a predetermined threshold t: 

ctij / m > t 
2.  Build graph of docs:  
       edge between each pair of similar docs  
3.  The clusters of similar docs are the connected 

components in the graph 
–  single link cluster similarity 
  Equivalently : 
•  UNION-FIND (text book) 
•  minimum spanning tree with edge removal 
-  more info, more work? 

20 

Revisit the original paradigm 
A general paradigm to find duplicates in N docs: 

1.  Define function f capturing contents of each 
document in one number     O(|doc|) 

“Hash function”, “signature”, “fingerprint” 
2.  Create <f(doci), ID of doci> pairs  O( Σi=1...N (|doci|) ) 
3.  Sort the pairs     O(N log N ) 
4.  Recognize duplicate or near-duplicate documents 

as having the same f value or f values within a small 
threshold          O(N) 

Compare:  computing a similarity score on pairs of 
documents 

21 

Paradigm? 

•  Does compare docs, so not same as paradigm 
we started with, but uses ideas 

•  Contents of doc captured by sketch – a set of 
shingle values 

•  Similarity of docs scored by count of common 
shingle values for docs  

•  Don’t look at all doc pairs, look at all doc pairs 
that share a shingle value 

•  Uses clustering by similarity threshold  

22 

Algorithm cost 
1.  Calculate sketch ψ(Di) for every Di  O( Σim|Di| ) 

2.  Calculate | ψ(Di) ∩ ψ(Dj)| = ctij for each non-
empty intersection: 

i.  Produce list of <shingle value, docID> pairs for all 
shingle values x(Πk, Di) in the sketch for each doc.  

ii.  Sort the list by shingle value           O(mN log (mN) ) 
iii.  Produce all triples <ID(Di), ID(Dj), cti,j> for which 

cti,j>0 
   This not linear-time for the list of docs for 

one shingle value               O(mN2) 

3.  Build clusters of similar/almost identical docs 
Degree of similarity depends on threshold … 

23 

More efficient : supershingles 

“meta-sketch”  
1.  Sort shingle values of a sketch 
2.  Compute the shingling of the sequence of shingle 

values 
•  Each original shingle value now a token 
•  Gives “supershingles” 

3.  “meta-sketch” = set of supershingles 
One supershingle in common =>  
                                   sequences of shingles in common 
Documents with ≥1 supershingle in common => similar 

•  Each supershingle for a doc. characterizes the doc 
•  Sort <supershingle, docID> pairs: docs sharing a 

supershingle are similar =>  our first paradigm 24 

Pros and Cons of Supershingles 

+ Faster 
-  Problems with small documents – not enough 

shingles 
-  Can’t do containment  

Shingles of superset that are not in subset 
break up sequence of shingle values 



5 

25 

Variations of shingling 

•  Can define different ways to do sampling 
•  Studies in original paper used modular 

arithmetic 
– sketch formed by taking shingle hash values 

mod some selected m 

26 

Original experiments (1996)  
by Broder et. al. 

•  30 million HTML and text docs (150GB) from Web crawl 
•  10-word shingles 
•  600 million shingles (3GB) 
•  40-bit shingle “fingerprints”  
•  Sketch using 4% shingles (variation of alg. we’ve seen) 
•  Used count of shingles for similarity 
•  Using threshold t = 50%, found  

–  3.6 million clusters of 12.3 million docs 
–  2.1 million clusters of identical docs – 5.3 million docs 
–  remaining 1.5 million clusters mixture: 

“exact duplicates and similar” 


