Finding near-duplicate documents

Duplicate versus near duplicate documents

- Duplicate = identical?
- · Near duplicate:

small structural differences

- · not just content similarity
- · define "small"
 - date change?
 - small edits?
 - metadata change?
 - other?

2

Applications

- · creating collection
 - indexing
- · Crawling network
- · Returning query results
 - cluster near duplicates; return 1
- Plagiarism

3

Framework

- Algorithm to assign quantitative degree of similarity between documents
- Issues
 - What is basic token for documents?
 - character
 - word/term
 - What is threshold for "near duplicate"?

Edit distance for collections

- What are computational costs?

,

Classic document comparison

- · Edit distance
 - count deletions, additions, substitutions to convert Doc₁ into Doc₂
 - can each action can have different cost
 - applications
 - UNIX "diff"
 - · similarity of genetic sequences
- · Edit distance algorithm
 - dynamic programming
 - time O(m*n) for strings length m and n

• token = word

- compare other applications
- Cost is $O(\sum_{i,j} |Doc_i|^* |Doc_j|)$
- Right sense of similarity?

Addressing computation cost

A general paradigm to find duplicates in N docs:

- 1. Define function *f* capturing contents of each document in one number
 - "Hash function", "signature", "fingerprint"
- 2. Create < f(doci), ID of doci> pairs
- 3. Sort the pairs
- 4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small

Compare: computing a similarity score on pairs of documents

Optimistic cost

A general paradigm to find duplicates in N docs:

- 1. Define function *f* capturing contents of each document in one number O(|doc|) "Hash function", "signature", "fingerprint"
- 2. Create $< f(doc_i)$, ID of $doc_i > pairs O(\sum_{i=1...N} (|doc_i|))$
- Sort the pairs O(N log N)
- Recognize duplicate or near-duplicate documents as having the same f value or f values within a small

Compare: computing a similarity score on pairs of documents

General paradigm: details

Define function f capturing contents of each document in one number

"Hash function", "signature", "sketch", "fingerprint"

- Create < f(doc_i), ID of doc_i> pairs
- Sort the pairs
- Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold
 - recognize exact duplicates:
 - threshold = 0
 - · examine documents to verify duplicates
 - recognize near-duplicates

Problem with "small threshold"?

General paradigm: details

- Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold
 - recognize exact duplicates:
 - threshold = 0
 - examine documents to verify duplicates
 - recognize near-duplicates

Problem with "small threshold"?

How deal with

<1, D₁> <1.01, D₂> <1.02, D₃><1.99, D₁₀₀>

and threshold .01 (using ≤ threshold)?

"Syntactic clustering"

We will look at this one example:

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig, Syntactic Clustering of the W Sixth International WWW Conference, 1997.

- "syntactic similarity" versus semantic Sequences of words
- Finding near duplicates
- Doc = sequence of words Word = Token
- Uses sampling
- Similarity based on shingles
- Does compare documents

• A w-shingle is a contiguous subsequence of w words

Shingles

• The w-shingling of doc D, S(D, w) is the set of unique w-shingles of D

Similarity of docs with shingles

- ➤ For **fixed w**, resemblance of docs A and B: $r(A, B) = |S(A) \cap S(B)| / |S(A) \cup S(B)|$ Jaccard coefficient
- For fixed w, containment of doc A in doc B:
 C(A, B) = |S(A) ∩ S(B)| / |S(A)|
- For fixed w, resemblance distance betwn docs A and B:
 D(A, B) = 1- r(A, B)
 Is a metric (triangle inequality)

Note we are now comparing documents!

13

```
Example
A: "a rose is red a rose is white"
4-shingles:
   "a rose is red"
                       B: "a rose is white a rose is red"
   "rose is red a'
                       4-shingles:
   "is red a rose"
                           "a rose is white"
   "red a rose is"
                           "rose is white a"
   "a rose is white".
                           "is white a rose"
                           "white a rose is"
r(A, B) = 0.25
                          "a rose is red"
                                                       14
```

Sample of shingles

Want to **estimate** r and/or c

Do this by calculating approximation on a sample of shingles **for fixed w**

- 1-to-1 map each shingle to integer in fixed, large range R

 64-bit hash, R=[0, 2⁶⁴⁻¹]
- Let Π be a random permutation from R to R
- For any S(D) define:

H(D) = Set of integer hash values corresponding to shingles in S(D)

 $\Pi(D)$ = Set of permuted values in H(D) $x(\Pi, D)$ = smallest integer in $\Pi(D)$

15

Sketch of shingles

• Let $\Pi_1,\,...,\,\Pi_{\rm m}$ be m random permutations R ightarrow R

– text: m=20

The sketch of doc D for $\Pi_1, \ \dots, \ \Pi_m$ is $\psi(D)$ = { $x(\Pi_i, \ D) \mid 1 \le i \le m$ }

doc → set shingles → set integers

- \rightarrow m sets permuted integers
- → m smallest integers: one per permutation

Sketch is a sampling

16

Approximation of resemblance

Theorem:

For random permutation Π :

 $r(A, B) = P(x(\Pi, A) = x(\Pi, B))$

Estimate P ($x(\Pi, A) = x(\Pi, B)$) as $|\psi(A) \cap \psi(B)| / m$

recall m is # permutations

17

Algorithm used (text's version)

- 1. Calculate *sketch* $\psi(D_i)$ for every doc D_i
- 2. Calculate $| \psi(D_i) \cap \psi(D_j)| = ct_{ij}$ for each nonempty intersection:
 - Produce list of <shingle value, docID> pairs for all shingle values x(Π_k, D_i) in the sketch for each doc.
 - ii. Sort the list by shingle value
 - iii. Produce all triples <ID(D_j), ID(D_j), ct_{i,j}> for which ct_{i,j}>0

This *not linear-time* for the list of docs for one shingle value

3. Build clusters of similar/almost identical docs Degree of similarity depends on threshold ...

Clustering

 Define docs to be similar if approximate resemblance greater than a predetermined threshold t:

 $ct_{ii}/m > t$

2. Build graph of docs:

edge between each pair of similar docs

- The clusters of similar docs are the connected components in the graph
 - single link cluster similarity

Equivalently:

- UNION-FIND (text book)
- minimum spanning tree with edge removal
 - more info, more work?

19

Revisit the original paradigm

A general paradigm to find duplicates in N docs:

- Define function f capturing contents of each document in one number O(|doc|)
 - "Hash function", "signature", "fingerprint"
- 2. Create < f(doc_i), ID of doc_i> pairs O($\Sigma_{i=1...N}$ (|doc_i|))
- 3. Sort the pairs O(N log N)
- Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold O(N)

Compare: computing a similarity score on pairs of documents

20

Paradigm?

- Does compare docs, so not same as paradigm we started with, but uses ideas
- Contents of doc captured by sketch a set of shingle values
- Similarity of docs scored by count of common shingle values for docs
- Don't look at all doc pairs, look at all doc pairs that share a shingle value
- · Uses clustering by similarity threshold

21

Algorithm cost

- 1. Calculate *sketch* $\psi(D_i)$ for every $D_i \circ O(\Sigma_i m |D_i|)$
- Calculate | ψ(D_i) ∩ ψ(D_j)| = ct_{ij} for each nonempty intersection:
 - i. Produce list of <shingle value, docID> pairs for all shingle values $\chi(\Pi_k,D_i)$ in the sketch for each doc.
 - ii. Sort the list by shingle value O(mN log (mN))
 - iii. Produce all triples <ID(D_j), ID(D_j), ct_{i,j}> for which ct_{i,j}>0

This *not linear-time* for the list of docs for one shingle value O(mN²)

3. Build clusters of similar/almost identical docs
Degree of similarity depends on threshold ...

22

More efficient : supershingles

"meta-sketch"

- 1. Sort shingle values of a sketch
- Compute the shingling of the sequence of shingle values
 - · Each original shingle value now a token
 - Gives "supershingles"
- 3. "meta-sketch" = set of supershingles

One supershingle in common =>

sequences of shingles in common

Documents with ≥1 supershingle in common => similar

- Each supershingle for a doc. characterizes the doc
- Sort <supershingle, docID> pairs: docs sharing a supershingle are similar => our first paradigm

+ Faster

Problems with small documents – not enough shingles

Pros and Cons of Supershingles

 Can't do containment
 Shingles of superset that are not in subset break up sequence of shingle values

Variations of shingling

- · Can define different ways to do sampling
- Studies in original paper used modular arithmetic
 - sketch formed by taking shingle hash values mod some selected m

25

Original experiments (1996) by Broder et. al.

- 30 million HTML and text docs (150GB) from Web crawl
- 10-word shingles
- 600 million shingles (3GB)
- 40-bit shingle "fingerprints"
- Sketch using 4% shingles (variation of alg. we've seen)
- Used count of shingles for similarity
- Using threshold t = 50%, found
 - 3.6 million clusters of 12.3 million docs
 - 2.1 million clusters of identical docs 5.3 million docs
 - remaining 1.5 million clusters mixture:

"exact duplicates and similar"