

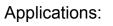
Informal goal

- Given set of objects and measure of similarity between them, group similar objects together
- What mean by "similar"?
- · What is good grouping?
- · Computation time / quality tradeoff

General types of clustering

- "Soft" versus "hard" clustering
 - Hard: partition the objects
 - each object in exactly one partition
 - Soft: assign degree to which object in cluster
 - view as probability or score
- flat versus hierarchical clustering

 hierarchical = clusters within clusters



2

Many

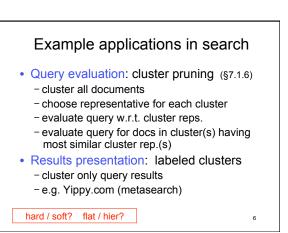
- biology
- astronomy
- computer aided design of circuits
- information organization
- marketing
- ...

Clustering in information search and analysis

Group information objects

\Rightarrow discover topics

- ? other groupings desirable
- Clustering versus classifying
 - classifying: have pre-determined classes with example members
 - clustering:
 - get groups of similar objects
 - added problem of labeling clusters by topic
 - e.g. common terms within cluster of docs. $_{5}$



Issues

- What attributes represent items for clustering purposes?
- · What is measure of similarity between items?
 - General objects and matrix of pairwise similarities
 Objects with specific properties that allow other
 - specifications of measure
 - viost common:
 - Objects are d-dimensional vectors
 - » Euclidean distance
 - » cosine similarity
- · What is measure of similarity between clusters?

Issues continued

- Cluster goals?
 - Number of clusters?
 - flat or hierarchical clustering?
 - cohesiveness of clusters?
- How evaluate cluster results? – relates to measure of closeness between clusters
- Efficiency of clustering algorithms

 large data sets => external storage
- Maintain clusters in dynamic setting?
- Clustering methods? MANY!

Quality of clustering

- In applications, quality of clustering depends on how well solves problem at hand
- Algorithm uses measure of quality that can be optimized, but that may or may not do a good job of capturing application needs.
- Underlying graph-theoretic problems usually NP-complete

e.g. graph partitioning

· Well known, well used

· Iterative improvement

Uses notion of centroid

Flat clustering

Usually algorithm not finding optimal clustering

General types of clustering methods

- · constructive versus iterative improvement
 - constructive: decide in what cluster each object belongs and don't change
 often faster
 - iterative improvement: start with a clustering and move objects around to see if can improve clustering

 often slower but better

10

12

Vector model:

K- means algorithm

· Number of clusters picked ahead of time

11

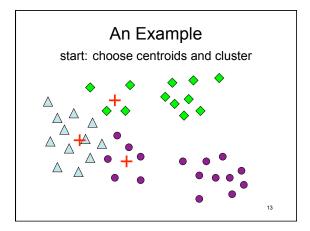
Typically uses Euclidean distance

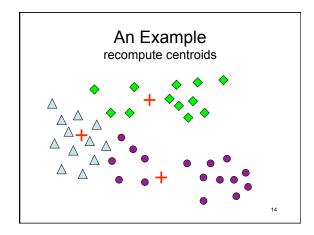
K-means overview

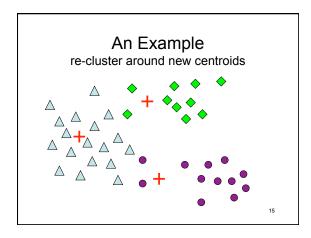
- Choose k points among set to be clustered

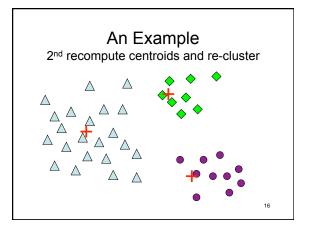
 Call them k centroids
- not required to be in set to be clustered
- For each point not selected, assign it to its closest centroid
 - All assignment give initial clustering
- Until "happy" do:
 - Recompute centroids of clusters
 New centroids may not be points of original set
 - Reassign all points to closest centroid
 - Updates clusters

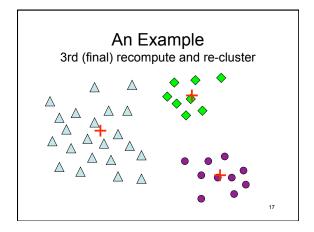
2

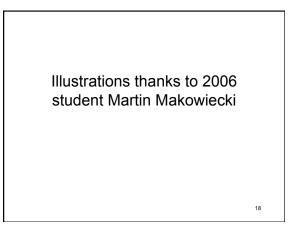


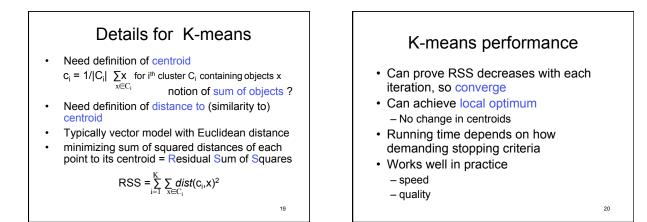


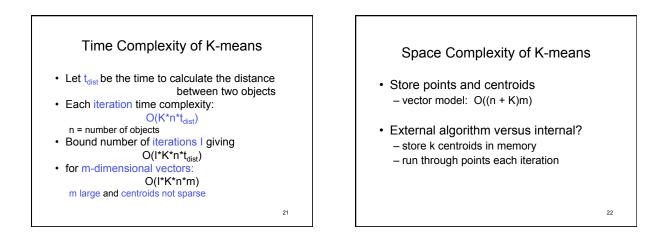


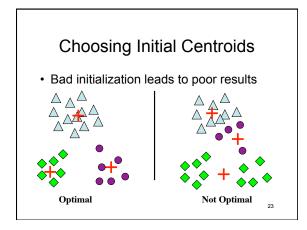


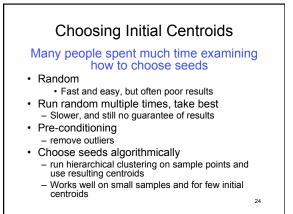


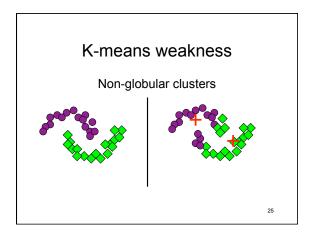


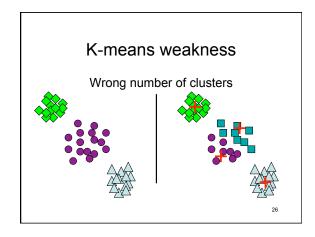


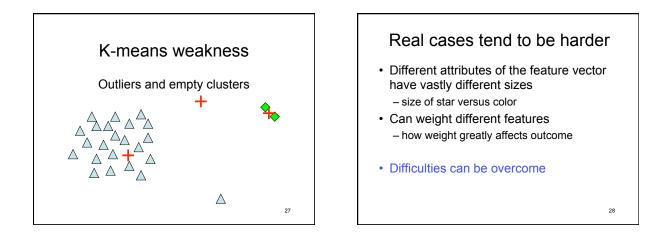


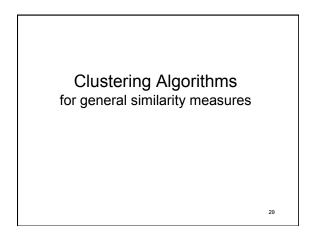


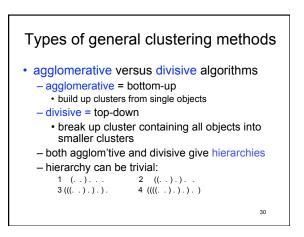


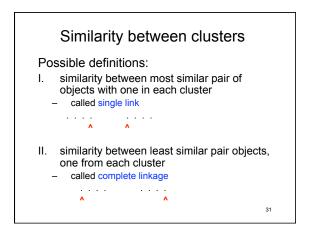


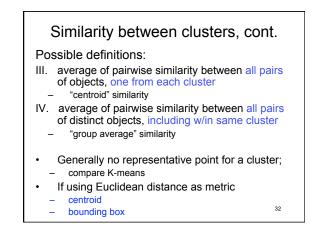


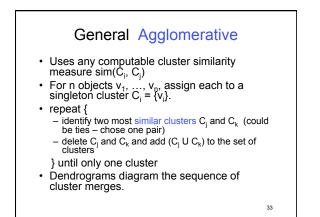


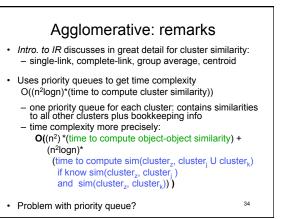




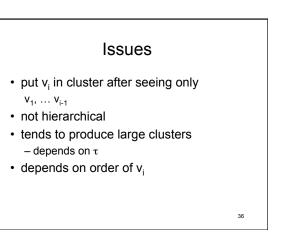










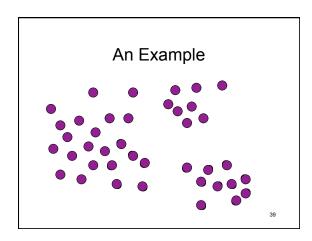


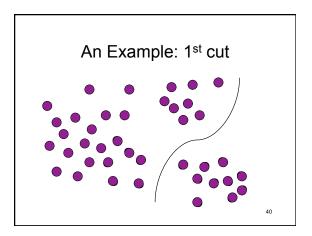
Alternate perspective for single-link algorithm

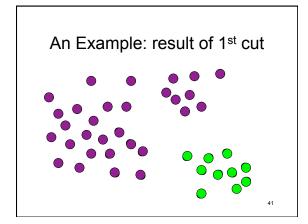
- Build a minimum spanning tree (MST)
 graph algorithm
 - · edge weights are pair-wise similarities
 - since in terms of similarities, not distances, really want maximum spanning tree
- For some threshold $\tau,$ remove all edges of similarity < τ
- Tree falls into pieces => clusters
- Not hierarchical, but get hierarchy for sequence of τ $$_{\rm 37}$$

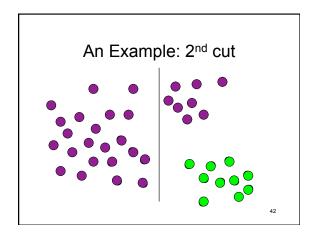
Hierarchical Divisive: Template Put all objects in one cluster Repeat until all clusters are singletons a) choose a cluster to split what criterion? b) replace the chosen cluster with the sub-clusters split into how many? how split? "reversing" agglomerative => split in two cutting operation: cut-based measures seem to be a natural choice. focus on similarity across cut - lost similarity

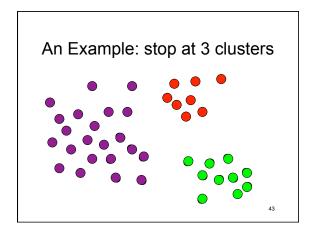
not necessary to use a cut-based measure

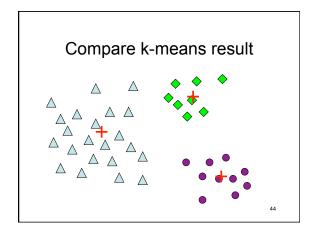


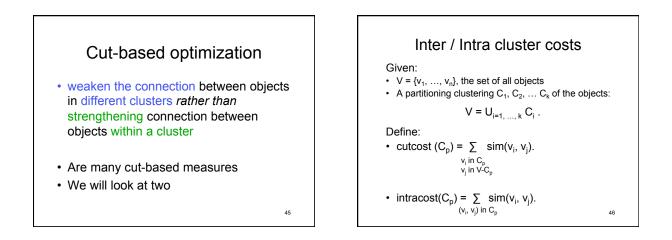


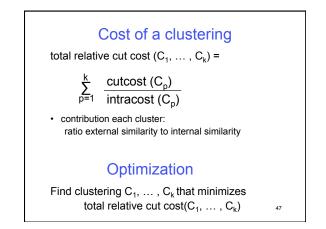


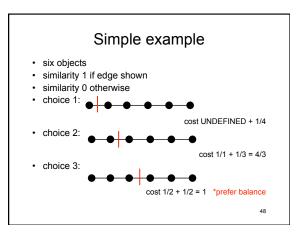


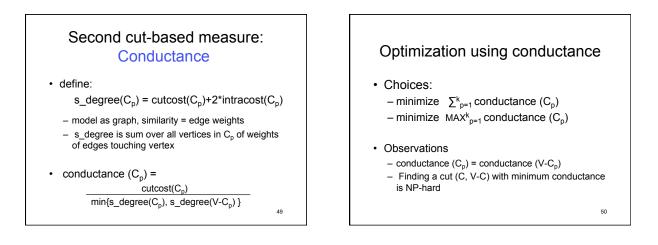


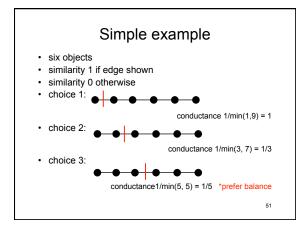


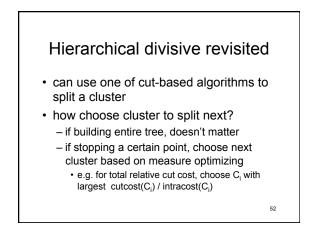


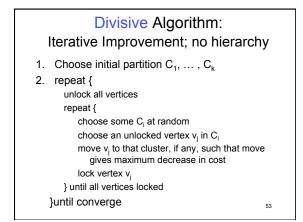


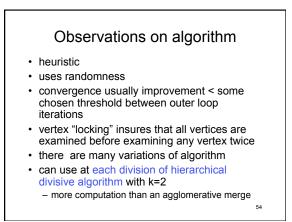












Compare to k-means

- · Similarities:
 - number of clusters, k, is chosen in advance
 - an initial clustering is chosen (possibly at random)
 - iterative improvement is used to improve clustering

Important difference:

- divisive algorithm can minimize a cut-based cost
 total relative cut cost, conductance use external and internal measures
- k-means maximizes only similarity within a cluster
 ignores cost of cuts

55

57

Eigenvalues and clustering

General class of techniques for clustering a graph using eigenvectors of adjacency matrix (or similar matrix) called

Spectral clustering

First described in 1973

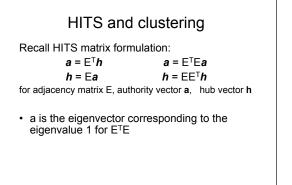
spectrum of a graph is list of eigenvalues, with multiplicity, of its adjacency matrix

56

58

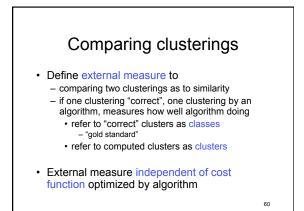
Spectral clustering: brief overview Given: k: number of clusters nxn object-object sim. matrix S of non-neg. val.s Compute: 1. Derive matrix L from S (straightforward computation) e.g. Laplacian L=I-E, are variations in def. 2. find eigenvectors corresp. to k smallest eigenval.s of L 3. use eigenvectors to define clusters variety of ways to do this all involve another, simpler, clustering e.g. points on a line

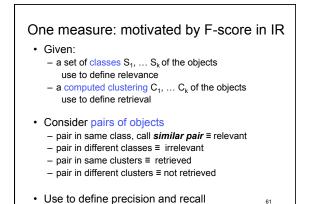
Spectral clustering optimizes a cut measure similar to total relative cut cost

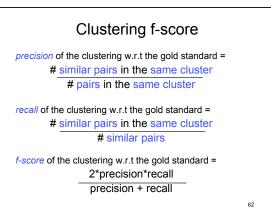


HITS and clustering

- Non-principal eigenvectors of EE^T and E^TE have positive and negative component values
 - Denote a_{e2}, a_{e3}, ...
 - matching h_{e2}, h_{e3}, ...
 - E is adjacency matrix
- For a matched pair of eigenvectors \boldsymbol{a}_{ei} and \boldsymbol{h}_{ei}
 - Denote k^{th} component of j^{th} pair: $\boldsymbol{a}_{ej}(k)$ and $\boldsymbol{h}_{ej}(k)$
 - Make a "community" of size c (chosen constant):
 Choose c pages with most positive h_{el}(k) hubs
 - Choose c pages with most positive $\boldsymbol{a}_{ej}(k)$ authorities
 - Make another "community" of size c:
 - Choose c pages with most negative $h_{\rm ej}({\rm k})$ hubs
 - Choose c pages with most negative $a_{ej}(k)$ authorities







Properties of cluster F-score

- always ≤ 1
- Perfect match computed clusters to classes gives F-score = 1
- Symmetric
 - Two clusterings {C_i} and {K_j}, neither "gold standard" treat {C_i} as if are classes and compute F-score of
 - {K_j} w.r.t. {C_j} = F-score_{{Ci}}({K_j})
 - treat {K_j} as if are classes and compute F-score of {C_i} w.r.t. {K_j} = F-score_{{Kj}}({C_i})
 - \Rightarrow F-score_{Ci}({K_j}) = F-score_{{Kj}}({C_i})

another related external measure Rand index

(# similar pairs in the same cluster + # dissimilar pairs in the different clusters)

N (N-1)/2

percentage pairs that are correct

64

Clustering: wrap-up

- many applications
 - application determines similarity between objects
- menu of
 - cost functions to optimizes
 - similarity measures between clusters
 - types of algorithms
 - flat/hierarchical
 - constructive/iterative
 - algorithms within a type

65

63