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Regression

• We have studied classification, the problem of automatically categorizing
data into a set of discrete classes.

• E.g., based on its words, is an email spam or ham?

• Regression is the problem of predicting a real-valued variable from data
input.



Linear regression
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Data are a set of inputs and outputs D = {(xn,yn)}Nn=1



Linear regression
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The goal is to predict y from x using a linear function.



Examples
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• Given today’s weather, how much will it rain tomorrow?

• Given today’s market, what will be the price of a stock tomorrow?

• Given her emails, how long will a user stay on a page?

• Others?



Linear regression
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Multiple inputs

• Usually, we have a vector of inputs, each representing a different feature of
the data that might be predictive of the response.

x = 〈x1,x2, . . . ,xp〉

• The response is assumed to be a linear function of the input

f (x)=β0 +
p
∑

i=1

xiβi

• Here, β>x = 0 is a hyperplane.



Multiple inputs

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.1: Linear least squares fitting with X ∈ IR2.

We seek the linear function of X that minimizes the

sum of squared residuals from Y .



Flexibility of linear regression

• This set-up is less limiting than you might imagine.

• Inputs can be:

• Any features of the data
• Transformations of the original features, e.g.,

x2 = logx1 or x2 =
p

x1.
• A basis expansion, e.g., x2 = x2

1 and x3 = x3
1

• Indicators of qualitative inputs, e.g., category
• Interactions between inputs, e.g., x1 = x2x3

• Its simplicity and flexibility make linear regression one of the most
important and widely used statistical prediction techniques.



Polynomial regression example
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Linear regression
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f (x)=β0 +βx



Polynomial regression
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Fitting a regression

• Given data D = {(xn,yn)}Nn=1, find
the coefficient β that can predict
ynew from xnew.

• Simplifications:

• 0-intercept, i.e., β0 = 0
• One input, i.e., p = 1

• How should we proceed?
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Residual sum of squares
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|(yn − βxn)|

A reasonable approach is to minimize sum of the squared Euclidean distance
between each prediction βxn and the truth yn

RSS(β)=
1

2

N
∑

n=1

(yn−βxn)
2



RSS for two inputs

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.1: Linear least squares fitting with X ∈ IR2.

We seek the linear function of X that minimizes the

sum of squared residuals from Y .



Optimizing β

The objective function is

RSS(β)=
1

2

N
∑

n=1

(yn−βxn)
2

The derivative is
d

dβ
RSS(β)=−

N
∑

n=1

(yn−βxn)xn

The optimal value is

β̂ =

∑N
n=1 ynxn
∑

n x2
n



The optimal β

• The optimal value is

β̂ =

∑N
n=1 ynxn
∑

n x2
n

• + values pull the slope up.

• − values pull the slope down
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Prediction

• After finding the optimal β , we
would like to predict a new output
from a new input.

• We use the point on the line at the
input,

ŷnew = β̂xnew
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Prediction

• Note the difference between
classification and prediction.

• Note that linear regression
assumes the input is always
observed.
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Multiple inputs

In general,

y =β0 +
p
∑

i=1

βixi

To simplify, let β be a p+1 vector and set xp+1 = 1. Now the RSS is

RSS(β)=
1

2

N
∑

n=1

(yn−β>xn)
2

(Note that βp+1 is β0 in the old notation.)



Multiple inputs

The objective is:

RSS(β)=
1

2

N
∑

n=1

(yn−β>xn)
2

The derivative with respect to βi is:

d

dβi
=−

N
∑

n=1

(yn−βixn,i)xn,i

As a vector, the gradient is:

5βRSS=−
N
∑

n=1

(yn−β>xn)xn

One option : optimize with some kind of gradient-based algorithm.



The normal equations

The design matrix is an N× (p+1) matrix:

X =













x1,1 x1,2 . . . x1,p 1
x2,1 x2,2 . . . x2,p 1

...
xN,1 xN,2 . . . xN,p 1













The response vector is an N-vector:

y = 〈y1,y2, . . . ,yN〉

Recall that the parameter vector is a (p+1)-vector

β = 〈β1,β2, . . . ,βp+1〉



The normal equations

With these definitions, the gradient of the RSS is

5βRSS=−X>(y −Xβ)

Setting to the 0-vector and solving for β :

X>y −X>X β̂ = 0

X>X β̂ = X>y

β̂ = (X>X)−1X>y

This works as long as X>X is invertible, i.e., X is full rank.



Probabilistic interpretation
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• Our reasoning so far has not
included any probabilities

• It is no surprise that linear
regression has a probabilistic
interpretation

• What do you think that it is?



Probabilistic interpretation

Xn Yn β
N

• Linear regression assumes that the output are drawn from a Normal
distribution whose mean is a linear function of the coefficients and the input,

Yn |xn,β ∼N (β · xn,σ2)

• This is like putting a Gaussian “bump” around the mean, which is a linear
function of the input.

• Note that this is a conditional model. The inputs are not modeled.



Conditional maximum likelihood

We find the parameter vector β that maximizes the conditional likelihood. The
conditional log likelihood of data D = {(xn,yn)}Nn=1 is

L (β) = log
N
∏

n=1

p(yn |xn,β)

= log
N
∏

n=1

1
p

2πσ2
exp

¨

−(yn−β>xn)2

2σ2

«

=
N
∑

n=1

−
1

2
log2πσ2−

1

2
(yn−β>xn)

2/σ2

Question: What happens when we optimize with respect to β?



Conditional maximum likelihood

Maximizing the conditional log likelihood with respect to β ,

L (β)=
N
∑

n=1

−
1

2
log2πσ2−

1

2
(yn−β>xn)

2/σ2

is the same as minimizing the residual sum of squares

RSS(β)=
1

2
(yn−β>xn)

2

The maximum likelihood estimates are identical to the estimates we obtained
earlier.

Question: What is the probabilistic interpretation of prediction?



Probabilistic prediction

• In prediction, we estimate the
conditional expectation:

E[ynew |xnew] =β
>xnew

• This is identical to the geometric
treatment.

• Note: the variance term σ2 does
not play a role in estimation or
prediction.

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3
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Figure 3.1: Linear least squares fitting with X ∈ IR2.

We seek the linear function of X that minimizes the

sum of squared residuals from Y .



“Real-world” example



“Real-world” example
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Important aside

• A pervasive concept in machine learning and statistics is the bias variance
trade-off.

• Consider a random data set that is drawn from a linear regression model,

Yn |xn,β ∼N (βxn,σ2).

• We can contemplate the maximum likelihood estimate β̂ as a random
variable whose distribution is governed by the distribution of the data set
D = {(xn,yn)}Nn=1.



Bias variance decomposition

Suppose we observe a new data input x , we can consider the mean squared
error of our estimate of E[y |x] = β̂x .

MSE(β̂x)=ED [(β̂x −βx)2]

Note that β is not random and β̂ is random.

MSE = E[(β̂x)2]−2E[β̂x]βx +(βx)2

= E[(β̂x)2]−2E[(β̂x)](βx)+(βx)2 +E[(β̂x)]2−E[(β̂x)]2

=
�

E[(β̂x)2−E[β̂x]2
�

+
�

E[β̂x]−βx
�2



Bias variance decomposition

MSE=
�

E[(β̂x)2]−E[β̂x]2
�

+
�

E[β̂x]−βx
�2

• The second term is the squared bias,

bias=E[β̂x]−βx

An estimate for which this term is zero is an unbiased estimate.

• The first term is the variance,

variance=E[(β̂x)2]−E[β̂x]2

This reflects how sensitive the estimate is to the randomness inherent in
the data.



Bias variance and prediction error

What about prediction error, which is what we ultimately care about? Suppose
we see a new input x . The expected squared prediction error is

ED [EY [(β̂x −Y )2]]

The first expectation is taken for the randomness of β̂ . The second is taken for
the randomness of Y given x .

ED [EY [(β̂x −Y )2]] = Var(Y )+MSE(β̂x)

= σ2 +Bias2(β̂x)+Var(β̂x)

The first term is the inherent uncertainty around the true mean; the second two
terms are the bias variance decomposition of the estimator.



Gauss-Markov theorem

MSE=
�

E[(β̂x)2]−E[β̂x]2
�

+
�

E[β̂x]−βx
�2

The Gauss-Markov theorem states that the MLE/least squares estimate of β is
the unbiased estimate with smallest variance.



Bias variance trade-off
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• Classical statistics focuses on unbiased estimates.

• Modern statistics has explored the trade-off.

• We might sacrifice a little bias for a larger reduction in variance.
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Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• In regression, we can make this trade-off with regularization, which means
placing constraints on the coefficients β .

• Intuitively, this reduces the variance because it limits the space that the
parameter vector β can live in.

• If the true MLE of β lives outside that space, then the resulting estimate
must be biased because of the Gauss-Markov theorem.



Regularization
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• Regularization encourages smaller and simpler models.

• Intuitively, simpler models are more robust to overfitting, generalizing pooly
because of a close match to the training data.

• Simpler models can also be more interpretable, which is another goal of
regression.



Ridge regression
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• In ridge regression, we optimize the RSS subject to a constraint on the sum
of squares of the coefficients,

minimize
∑N

n=1
1
2(yn−βxn)2

subject to
∑p

i=1β
2
i ≤ s

• This constrains the coefficients to live within a sphere of radius s.



Ridge regression

Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

!
^

!
^2

. .!

1

! 2

!
1

!

Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• What happens as s increases?



Ridge regression

• The ridge regression estimate can also be expressed as

β̂ ridge = argmin
β

N
∑

n=1

1

2
(yn−βxn)

2 +λ
p
∑

i=1

β 2
i

• This problem is convex.

• If the covariates are uncorrelated, it has an analytic solution.
(You’ll see this on your homework.)



Ridge regression

β̂ ridge = argmin
β

N
∑

n=1

1

2
(yn−βxn)

2 +λ
p
∑

i=1

β 2
i
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• There is a 1-1 mapping between s and λ.

• λ is the complexity parameter

• It determines the radius of the sphere

• Trades off an increase in bias for a decrease in
variance



Prostate cancer data

• Study from Stamey et al. (1989)

• Examined the correlation between the level of prostate-specific antigen and
a number of clinical measures in mean about to receive a procedure

• Variables are

• log cancer volume
• log prostate weight
• age
• log of the amount of benign prostatic hyperplasia
• seminal besicle invasion
• log of capsular penetration
• Gleason score
• percent of Gleason scores 4 or 5



Coefficients as a function of λ
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Figure 3.7: Profiles of ridge coefficients for the

prostate cancer example, as tuning parameter λ is var-

ied. Coefficients are plotted versus df(λ), the effec-

tive degrees of freedom. A vertical line is drawn at

df = 4.16, the value chosen by cross-validation.

How can we choose λ?
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• The choice of complexity parameter greatly
affects our estimate

• What would happen if we used training error as
the criterion?

• In practice, λ is chosen by cross validation.

• This is an attempt to minimize test error.



Cross-validation to choose the complexity parameter

• Divide the data into 10 folds

• Decide on candidate values of λ (e.g., a grid between 0 and 1)

• For each fold and value of λ,

• Estimate β̂ ridge on the out-of-fold samples.
• For each within-fold sample xn, compute its squared error

εn =(ŷn− yn)
2

• The score for that value of λ is

MSE(λ)=
1

N

N
∑

n=1

εn

• Choose the value of λ that minimizes this score.



Cross-validation to choose the complexity parameter

• The score for that value of λ is

MSE(λ)=
1

N

N
∑

n=1

εn

• Choose the value of λ that minimizes this value.

• Notice that each εn was computed from a model that did not include the
nth data point in its fit.

• Thus, MSE(λ) is an estimate of test error.

• Dave, draw a picture on the board.



Aside: Bayesian statistics

• In Bayesian statistics, we treat the parameter as a random variable.

• In the model, it is endowed with a prior distribution.

• Rather than estimate the parameter, we perform posterior inference.

• In general,

θ ∼ G0(α)

yn ∼ F(θ )

and posterior inference is concerned with

p(θ |y1, . . . ,yN ,α)

• The parameter to the prior α is called a hyperparameter.



Aside: Bayesian statistics

There are two usual ways of using the posterior to obtain an estimate

• Maximum a posteriori estimates

θMAP = argmax
θ

p(θ |y1, . . . ,yN ,α)

• Posterior mean estimate

θmean =E[θ |y1, . . . ,yN ,α]

• Why are these different from the MLE?



Ridge regression

Xn Yn β
N

λ

Ridge regression corresponds to MAP estimation in the following model:

βi ∼ N (0,1/λ)

Yn |xn,β ∼ N (β>xn,σ2)



Bayesian interpretation of ridge regression

Note that

p(βi |λ)=
1

p

2π(1/λ)
exp{λβ 2

i }

Let’s compute the MAP estimate of β :

max
β

p(β |y1:N ,x1:N ,λ) = max
β

logp(β |y1:N ,x1:N ,λ)

= max
β

logp(β ,y1:N |x1:N ,λ)

= max
β

log

 

p(y1:N |x1:N ,β)
p
∏

i=1

p(βi |λ)

!

= max
β
−RSS(β ;y1:N ,x1:N)−

p
∑

i=1

λβ 2
i



Bayesian intuitions
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• The hyperparameter controls how far away the
estimate will be from the MLE

• A small hyperparameter (large variance) will
choose the MLE, i.e., the data totally determine
the estimate

• As the hyperparameter gets larger, the estimate
moves further from the MLE. The prior
(E[β ] = 0) becomes more influential.

• A theme in Bayesian estimation: Both the data
and the prior influence the answer.



Summary of ridge regression
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• We constrain β to be in a hypersphere around 0.

• This is equivalent to minimizing the RSS plus a
regularization term.

• We no longer find the β̂ that minimizes the RSS.
(Contours illustrate constant RSS.)

• Also called shrinkage, because we are reducing
the components to be close to 0 and close to
each other

• Ridge estimates trade off bias for variance.



The lasso
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

!
^

!
^2

. .!

1

! 2

!
1

!

Figure 3.12: Estimation picture for the lasso (left)

and ridge regression (right). Shown are contours of the

error and constraint functions. The solid blue areas are

the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2,

respectively, while the red ellipses are the contours of

the least squares error function.

• A related regularization method is called the lasso.

• We optimize the RSS subject to a different constraint.

minimize
∑N

n=1
1
2(yn−βxn)2

subject to
∑p

i=1 |βi | ≤ s

• This small change yields very different estimates.



Lasso
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• What happens as s increases?

• Where is the solution going to lie?



Lasso
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• It’s a fact: unless it chooses β̂ , the lasso will set
some of the coefficients to exactly zero.

• This is a form of feature selection, identifying a
relevant subset of our inputs to perform
prediction.

• Trades off an increase in bias with a decrease in
variance

• And, provides interpretable (sparse) models



Lasso

• The lasso is equivalent to

β̂ lasso = argmin
β

N
∑

n=1

1

2
(yn−βxn)

2 +λ
p
∑

i=1

|βi |

• Again, there is a 1-1 mapping between λ and s

• This objective is still convex!



Why the lasso is exciting

β̂ lasso = argmin
β

N
∑

n=1

1

2
(yn−βxn)

2 +λ
p
∑

i=1

|βi |

• Prior to the lasso, the only “sparse” method was subset selection, finding
the best subset of features with which to model the data

• But, searching over all subsets is very computationally expensive

• The lasso efficiently finds a sparse solution with convex optimization.

• This is akin to a “smooth version” of subset selection.

• Note: the lasso won’t consider all possible subsets.



Optimizing λ
Elements of Statistical Learning c©Hastie, Tibshirani & Friedman 2001 Chapter 3

Shrinkage Factor s

C
o

e
ff

ic
ie

n
ts

0.0 0.2 0.4 0.6 0.8 1.0

-0
.2

0
.0

0
.2

0
.4

0
.6

•

•

•

•

•

•

•
•
•
• • • • • • •

•
•
•
•
•
•
•
•
• lcavol

• • • • •
•

•

•

•

•
•
•
•
•
• • • • • • • • • • • lweight

• • • • • • • • • • • • • •
•
•
•
•
•
•
•
•
• • •age

• • • • • • • • • •

•

•

•

•
•
• • • • • • • • • • lbph

• • • • • • •

•

•

•
•
•
•
•
• •

•
•
•
•
•
•
• • •svi

• • • • • • • • • • • • • • •
•

•

•

•

•

•

•

•

•
• lcp

• • • • • • • • • • • • • • • • • • • • • • • •
•gleason

• • • • • • • • • •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•pgg45

Figure 3.9: Profiles of lasso coefficients, as tuning

parameter t is varied. Coefficients are plotted versus

s = t/
∑p

1 |β̂j |. A vertical line is drawn at s = 0.5, the

value chosen by cross-validation. Compare Figure 3.7

on page 7; the lasso profiles hit zero, while those for

ridge do not.

As we increase s (decrease λ), coefficients become non-zero.



Choosing λ with LARS
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Figure 3.9: Profiles of lasso coefficients, as tuning

parameter t is varied. Coefficients are plotted versus

s = t/
∑p

1 |β̂j |. A vertical line is drawn at s = 0.5, the

value chosen by cross-validation. Compare Figure 3.7

on page 7; the lasso profiles hit zero, while those for

ridge do not.

• Again, we choose the complexity parameter λ with cross-validation.

• The LARS algorithm (Efron et al., 2004) lets us efficiently explore the entire
regularization path of λ.



Bayesian interpretation of the lasso

Xn Yn β
N

λ

Lasso regression corresponds to MAP estimation in the following model:

βi ∼ Laplace(λ)

Yn |xn,β ∼ N (β>xn,σ2)

Where the coefficients come from a Laplace distribution

p(βi |λ)=
1

2
exp{−λ|βi |}



Generalized regularization

• In general, regularization can be seen as minimizing the RSS with a
constraint on a q-norm,

minimize
∑N

n=1
1
2(yn−βxn)2

subject to ||β ||q ≤ s

• The methods we discussed so far:

• q = 2 : ridge regression
• q = 1 : lasso
• q = 0 : subset selection



Generalized regularization
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Figure 3.13: Contours of constant value of
∑

j |βj |q
for given values of q.

• This brings us away from the minimum RSS solution, but might provide
better test prediction via the bias/variance trade-off.

• Complex models have less bias; simpler models have less variance.
Regularization encourages simpler models.



Generalized regularization
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Figure 3.13: Contours of constant value of
∑

j |βj |q
for given values of q.

• Each of these methods correspond to a Bayesian solution with a different
choice of prior.

β̂ ridge = argmin
β

N
∑

n=1

1

2
(yn−βxn)

2 +λ||β ||q

• The complexity parameter λ can be chosen with cross validation.

• Lasso (q = 1) is the only norm that provides sparsity and convexity.



Regularization comparison


