Model-Based Classification

David M. Blei

February 29, 2012

Probability models

• A probability model is a joint distribution of a set of observations.

• Often, a model is indexed by a parameter. Each value of the parameter gives a different distribution of the data.

 – The parameter of a Bernoulli is the probability of heads.
 – The parameters of a Gaussian are its mean and variance.

• Many models (but not all) assume the data are independent and identically distributed.

• For a boring example, consider N coin flips, each of which has heads with probability π,

\[
p(x_1, \ldots, x_N \mid \pi) = \prod_{n=1}^{N} p(x_n \mid \pi).
\]

Each term is a Bernoulli,

\[
p(x_n \mid \pi) = \pi^{1(x_n=h)}(1 - \pi)^{1(x_n=t)}
\]

• Suppose we flip a coin N times and record the outcomes.

• Further suppose that we think that the probability of heads is π. (This is distinct from whatever the probability of heads “really” is.)

• Given π, the probability of an observed sequence is

\[
p(x_1, \ldots, x_N \mid \pi) = \prod_{n=1}^{N} \pi^{1(x_n=h)}(1 - \pi)^{1(x_n=t)}
\]
• As a function of π, the probability of a data set is the likelihood function.

• Taking logs, this is the log likelihood function.

$$\mathcal{L}(\pi) = \sum_{n=1}^{N} 1[x_n = h] \log \pi + 1[x_n = t] \log(1 - \pi) \tag{4}$$

• The maximum likelihood estimate is the value of the parameter that maximizes the log likelihood (equivalently, the likelihood).

• In the Bernoulli example, it is the proportion of heads.

$$\hat{\pi} = \frac{1}{N} \sum_{n=1}^{N} 1[x_n = H] \tag{5}$$

• In a Gaussian, it is the empirical mean

$$\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n \tag{6}$$

and empirical variance

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \hat{\mu})^2 \tag{7}$$

• In a sense, this is the value that best explains our observations.

• Why is the MLE good?
 – The MLE is consistent.
 – Flip a coin N times with true bias π^*.
 – Estimate the parameter from x_1, \ldots, x_N with the MLE $\hat{\pi}$.
 – Then,

$$\lim_{N \to \infty} \hat{\pi} = \pi^*$$

 – This is a good thing. It lets many statisticians sleep at night.

• (R demonstration: Bernoulli data sets)

• (Slides: Modeling approval ratings with a Gaussian)
Graphical models

- Represents a joint distribution of random variables; used to show models. (Also called “Bayesian network”)

- Semantics:
 - Nodes are RVs; Edges denote possible dependence
 - Shaded nodes are observed; unshaded nodes are hidden
 - GMs with shaded nodes represent posterior distributions.

- Each graphical model is a family of distributions.

- Connects computing about models to graph structure (COS513)

- Connects independence assumptions to graph structure (COS513)

- Here we’ll use it as a schematic for factored joint distributions.
 (Show the classification graphical model.)

- Return briefly to the Aliens/Watch example
 - It’s true that many members of this family do not have $X \perp Y \mid Z$.
 - The class discussion revealed conditions where Z is dependent on X and Y, but they are still conditionally independent. (That is a subfamily of this family.)
 - I conjectured that for conditional independence between X and Y, one of the dependencies of Z had to be broken. However, I couldn’t prove it.

Classification set-up

- In classification we observe two sets of data. One set contains data (“features”) labeled with a category. The other set contains unlabeled features.

- The idea is to fit a model of how the label relates to the features. Then given new unlabeled data, predict the category. This is supervised learning.

- More formally,
The fully observed data (also called the “training data”) are \(\{x_i, c_i\}_{i=1}^n \), where \(c_i \) is in one of \(k \) categories and the features \(x_i \) are a vector of values.

The partially observed data are \(x_{\text{new}} \). Our goal is to predict \(y_{\text{new}} \).

Here are some examples. In each, what are the features? What are the labels?

- Classify images into semantic categories
- Classify news articles into section of the newspaper
- Classify genetic code as exon or intron
- Classify radar blips as friendly or unfriendly
- Classify credit cards as stolen or not stolen
- Others?

Basic idea

Classification with generative models links statistical modeling to classification problems.

We can model many kinds of data (features \(x \)) with appropriate probability distributions.

- Continuous features can be modeled with a Gaussian
- Binary features can be modeled with a Bernoulli
- Positive features can be modeled with a Gamma
- Etc.

Recall that our training set is a collection of labeled feature vectors \((x_i, c_i) \). The idea is to fit a distribution of features \textit{conditional} on the class label.

- A different Gaussian for each class label
- A different Bernoulli for each class label
- A different Gamma distribution for each class label
- Etc.

To classify a new feature vector \(x \) we compute the conditional distribution of the class label given the features \(p(c \mid x) \).

For example:
Suppose images are represented with continuous value image features such as color intensities, texture features, and others.

Each training image is labeled with one category, such as “outdoor”, “indoor”, “sports”. (This data set exists. It’s called CalTech 101.)

To build our classifier, we fit a Gaussian distribution to each feature conditional on the class label. For example, we would find a distribution of color for indoor scenes, for outdoor scenes, for portraits, and each other category.\(^1\)

To classify a new image, we would consider each label and look at the probability of its features given that label. (It’s a little more complicated than this—see below—and this process will emerge naturally from Bayes rule.)

Modeling assumptions

- **Data**
 - The training data are \(D = \{ x_i, c_i \}_{i=1}^n \)
 - The data to predict are \(x_{\text{new}} \).

- The graphical models for fitting and prediction are the following.

- Some details
 - Small boxes are parameters. Unshaded are fit; shaded are fixed.
 - The joint distribution of a feature vector and label is
 \[
 p(x, c \mid \pi, \theta_{1:k}) = p(c \mid \pi)p(x \mid c, \theta_{1:k})
 \] (8)

 - The parameters \(\theta_{1:k} \) are the conditional distributions of the features. The parameter \(\pi \) is the probability of seeing each class.

\(^1\)Actually, we could fit a conditional distribution for the whole vector using a multivariate Gaussian. But, for now, let’s assume we fit one distribution for each feature.
- The second term $p(x \mid c, \theta_{1:k})$ selects the right class. (More below.)

- How do we “select” the right class in $p(x \mid c, \theta_{1:k})$ and $p(c \mid \pi)$?
 - The class label c is represented as a k-vector with a single one. For example, a data point in the fourth class has $c = \langle 0, 0, 0, 1, 0, 0, 0 \rangle$.
 - The second term is
 \[p(x \mid c, \theta_{1:k}) = \prod_{j=1}^{k} p(x \mid \theta_j)^{c_j}. \] (9)
 (Confirm that this equals the intended probability.)
 - The distribution in π works the same way. The parameter π is a k-vector of probabilities that sum to one. The probability of selecting a particular class label is
 \[p(c \mid \pi) = \prod_{j=1}^{k} \pi_j^{c_j}. \] (10)
 Note: the space of positive vectors that sum to one is called the simplex.
 - As we'll see, this representation helps in fitting the model.

- In fitting, we want to find the class parameters θ_k and class proportions π from a data set of labeled observations.

- In prediction, we use fitted parameters to predict the label of an unlabeled data point. We need to compute $p(c \mid x)$.

- Example #1: Gaussian classification
 - Let's say the data are continuous.
 - To be concrete, suppose each x_i is an image, with a vector real-valued image features measured on it. (E.g., these might be texture, color histogram, etc.)
 - Suppose each class is described by a Gaussian, where $\theta_k = \mu_k$ and $x \mid \theta_k \sim \mathcal{N}(\mu_k, \sigma^2)$. (Each shares the same variance, for simplicity.)
 - In fitting, we'd find the Gaussian distributions that best describe each class.
 - In prediction, we can take new images and classify them.

- Example #2: Multinomial classification
 - Let's say the data are discrete.
To be concrete, suppose each x_i is a document, i.e., a collection of observed words from a vocabulary.

Suppose each class is described by a multinomial distribution. In this case, θ_k is a distribution over terms and we assume the words of each document are drawn independently from that distribution. That is,

$$p(x | \theta_k) = \prod_{j=1}^{\ell} \theta_{k,x_j}, \quad (11)$$

where x_j is the jth word in document x (of length ℓ).

Actually, we'll use the “selection” mechanism here too. This lets us see how the probability is only a function of the count of each word. (For this reason, models like this are often called “bag of words” models.)

First, write down the previous equation in this form

$$p(x | \theta_k) = \prod_{j=1}^{\ell} \prod_{v=1}^{V} \theta_{k,v}^{x_{j,v}} \quad (12)$$

How many times does $\theta_{k,v}$ appear in this product? The number of times v appears in x. This gives our final expression for the probability of document x,

$$p(x | \theta_k) = \prod_{v=1}^{V} \theta_{k,v}^{n_{v}(x)}, \quad (13)$$

where $n_{v}(x)$ is the number of times term v occurred in x.

This is sometimes called a “Naive Bayes” classifier. (It’s a silly name: Most models are naive and there isn't much Bayesian about this one.)

Prediction

- In prediction we are given the parameters, $\theta_{1:K}$ and π, and an unlabeled data point x. We want to predict the label for x.

- We use Bayes rule to compute the posterior distribution of the label

$$P(C | x) \propto P(x | C)P(C). \quad (14)$$

This is proportional because the denominator $p(x)$ is constant with respect to C.

- For each possible label,

$$p(c | x) \propto p(x | \theta_c)\pi_c \quad (15)$$
• The precise form of the first term depends on the class-conditional data model.

• In the Gaussian case (with fixed variance) notice that

\[p(c \mid x) \propto \left(\frac{1}{2\sigma^2} (x - \mu_c)^2 \right) \pi_c. \quad (16) \]

Everything else is constant with respect to the class label \(c \).

• This equation says that we look at the squared difference between \(x \) and each class, weighted by the prior probability of that class.

• In the multinomial case, for each class we consider the probability that \(x \) was “generated” by its parameter, weighted again by the prior probability of each class,

\[p(c \mid x) \propto \left(\prod_{v=1}^{V} \theta_{cv}^{n_{cv}(x)} \right) \pi_c. \quad (17) \]

• In practice, we can take the label of maximum posterior probability. Or we can compute the probabilities and report a distribution.

Fitting

• Now we turn to the problem of finding parameters given data. We will find maximum likelihood estimates of the class conditional distributions \(\theta_{1:K} \) and the class proportions \(\pi \).

• The labeled data set is \(\{x_i, c_i\}_{i=1}^{n} \). E.g.,
 - Labeled images
 - Labeled documents
 - Labeled genes
 - Labeled songs

• Taking the log of the product of joint distributions \(p(c_i)p(x_i \mid c_i) \), the log likelihood is

\[\mathcal{L}(\pi, \theta_{1:K}) = \sum_{i=1}^{n} \sum_{j=1}^{k} c_i^j \log \pi^j + c_i^j \log p(x_i \mid \theta_j) \quad (18) \]
Finding the MLEs of π and $\theta_{1:k}$ decomposes into $K + 1$ MLE problems.

First, the MLE of the class proportions is

$$
\hat{\pi} = \arg \max_{\pi} \sum_{i=1}^{n} \sum_{j=1}^{K} c_{ij}^{i} \log \pi^{j}
$$

This is simply the empirical proportion of each class

$$
\hat{\pi}^{j} = \frac{\sum_{i=1}^{n} c_{ij}^{i}}{n},
$$

where the numerator is the number of times we saw class j.

The MLE of each class conditional parameter is

$$
\hat{\theta}_{j} = \arg \max_{\theta_{j}} \sum_{i=1}^{n} c_{ik}^{i} \log p(x_{i} | \theta_{j}).
$$

Notice that

- Only the points labeled with class j play a role in this objective function.
- This is like taking a simple MLE of those points, drawn IID from θ_{j}.
- Operationally, take each class and compute the MLE of its parameter from the data assigned to it. In a Bernoulli case, compute the probability of heads. In a Gaussian case, compute the empirical mean and variance.

Example: Simple Gaussian classification

- The data are average RGB values for images.
 - Whole images are summarized in a single color

- Draw the graphical model
 - Write the joint
 - Write the MLEs
 - Write the posterior given a new image

- Show the demo
Example: Multinomial classification

• Given labeled data, we can fit a model and classify new data points.

• This strategy is common in classifying documents. To review:
 – x_i is a collection of word counts.
 – x_i^u is the number of times word u occurred.
 – The class conditional parameter is a point on the term simplex,
 \[
 \theta_{ku} > 0 \quad \sum_{u=1}^{v} \theta_{ku} = 1. \tag{22}
 \]
 – The class conditional probability is
 \[
 p(x_i^u | \theta_k) = \prod_{u=1}^{v} \theta_{k_i u}^x \tag{24}
 \]
 – This assumes that the collection of words came IID from θ_k. (You can confirm this.)

• To complete the algorithm, we only need the MLE of θ_j from the collection of documents.

• This is the proportion of times that each word occurred in each class j document:
 \[
 \hat{\theta}_j^u = \frac{\sum_{i=1}^{n} c_j^i x_i^u}{\sum_{i=1}^{n} c_j^i \sum_{u=1}^{v} x_i^u}. \tag{25}
 \]
 – Numerator: The number of times word u occurred in documents of class j
 – Denominator: The number of words that occurred in documents of class j

• What happens if a test document contains a word that we never saw in training?

• In text models, we often *smooth* the parameter estimates.
 – The simplest smoother is to add a “pseudocount” to each word (such as one) before computing the MLE.
 – What does this do to the probabilities of frequent words? rare words?
 – Smoothing gets more complicated than that.

• It has interesting connections to
– Bayesian statistics: it can be construed as assuming the distribution came from a prior and then computing the posterior expectation of that distribution
– WWII history: A. Turing and I. J. Good developed smoothing to break the Nazi code.

• TODO: Implementing
 – The log trick