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Probability models

• A probability model is a joint distribution of a set of observations.

• Often, a model is indexed by a parameter. Each value of the parameter gives a different
distribution of the data.

– The parameter of a Bernoulli is the probability of heads.

– The parameters of a Gaussian are its mean and variance.

• Many models (but not all) assume the data are independent and identically distributed.

• For a boring example, consider N coin flips, each of which has heads with probability π,

p (x1, . . . ,xN |π) =
N
∏

n=1

p (x i |π). (1)

Each term is a Bernoulli,
p (xn |π) =π1(xn=h)(1−π)1(xn=t) (2)

• Suppose we flip a coin N times and record the outcomes.

• Further suppose that we think that the probability of heads is π. (This is distinct from
whatever the probability of heads “really” is.)

• Given π, the probability of an observed sequence is

p (x1, . . . ,xN |π) =
N
∏

n=1

π1[xn=h](1−π)1[xn=t] (3)

1



• As a function of π, the probability of a data set is the likelihood function.

• Taking logs, this is the log likelihood function.

L (π) =
N
∑

n=1

1[xn = h] logπ+1[xn = t] log(1−π) (4)

• The maximum likelihood estimate is the value of the parameter that maximizes the log
likelihood (equivalently, the likelihood).

• In the Bernoulli example, it is the proportion of heads.

π̂=
1

N

N
∑

n=1

1[xn =H ] (5)

• In a Gaussian, it is the empirical mean

µ̂=
1

N

N
∑

n=1

xn (6)

and empirical variance

σ̂2 =
1

N

N
∑

n=1

(xn − µ̂)2 (7)

• In a sense, this is the value that best explains our observations.

• Why is the MLE good?

– The MLE is consistent.

– Flip a coin N times with true bias π∗.

– Estimate the parameter from x1, . . .xN with the MLE π̂.

– Then,
lim

N→∞
π̂=π∗

– This is a good thing. It lets many statisticians sleep at night.

• (R demonstration: Bernoulli data sets)

• (Slides: Modeling approval ratings with a Gaussian)
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Graphical models

• Represents a joint distribution of random variables; used to show models.
(Also called “Bayesian network”)

• Semantics:

– Nodes are RVs; Edges denote possible dependence

– Shaded nodes are observed; unshaded nodes are hidden

– GMs with shaded nodes represent posterior distributions.

• Each graphical model is a family of distributions.

• Connects computing about models to graph structure (COS513)

• Connects independence assumptions to graph structure (COS513)

• Here we’ll use it as a schematic for factored joint distributions.
(Show the classification graphical model.)

• Return briefly to the Aliens/Watch example

– It’s true that many members of this family do not have X ⊥⊥ Y |Z .

– The class discussion revealed conditions where Z is dependent on X and Y , but they
are still conditionally independent. (That is a subfamily of this family.)

– I conjectured that for conditional independence between X and Y , one of the depen-
dencies of Z had to be broken. However, I couldn’t prove it.

Classification set-up

• In classification we observe two sets of data. One set contains data (“features”) labeled
with a category. The other set contains unlabeled features.

• The idea is to fit a model of how the label relates to the features. Then given new unlabeled
data, predict the category. This is supervised learning.

• More formally,
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– The fully observed data (also called the “training data”) are {x i , c i }ni=1, where c i is in
one of k categories and the features x i are a vector of values.

– The partially observed data are xnew. Our goal is to predict ynew.

• Here are some examples. In each, what are the features? What are the labels?

– Classify images into semantic categories

– Classify news articles into section of the newspaper

– Classify genetic code as entron or intron

– Classify radar blips as friendly or unfriendly

– Classify credit cards as stolen or not stolen

– Others?

Basic idea

• Classification with generative models links statistical modeling to classification problems.

• We can model many kinds of data (features x ) with appropriate probability distributions.

– Continuous features can be modeled with a Gaussian

– Binary features can be modeled with a Bernoulli

– Positive features can be modeled with a Gamma

– Etc.

• Recall that our training set is a collection of labeled feature vectors (x i , c i ). The idea is to fit
a distribution of features conditional on the class label.

– A different Gaussian for each class label

– A different Bernoulli for each class label

– A different Gamma distribution for each class label

– Etc.

• To classify a new feature vector x we compute the conditional distribution of the class
label given the features p (c |x ).

• For example:
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– Suppose images are represented with continuous value image features such as color
intensities, texture features, and others.

– Each training image is labeled with one category, such as “outdoor”, “indoor”, “sports”.
(This data set exists. It’s called CalTech 101.)

– To build our classifier, we fit a Gaussian distribution to each feature conditional on
the class label. For example, we would find a distribution of color for indoor scenes,
for outdoor scenes, for portraits, and each other category.1

– To classify a new image, we would consider each label and look at the probability of
its features given that label. (It’s a little more complicated than this—see below—and
this process will emerge naturally from Bayes rule.)

Modeling assumptions

• Data

– The training data areD = {x i , c i }ni=1

– The data to predict are {xnew}.

• The graphical models for fitting and prediction are the following,

xi
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π
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k

π

θj

k

c

x

Fitting Prediction

• Some details

– Small boxes are parameters. Unshaded are fit; shaded are fixed.

– The joint distribution of a feature vector and label is

p (x , c |π,θ1:k ) = p (c |π)p (x |c ,θ1:k ) (8)

– The parameters θ1:k are the conditional distributions of the features.
The parameter π is the probability of seeing each class.

1Actually, we could fit a conditional distribution for the whole vector using a multivariate Gaussian. But, for now,
let’s assume we fit one distribution for each feature.
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– The second term p (x |c ,θ1:k ) selects the right class. (More below.)

• How do we “select” the right class in p (x |c ,θ1:k ) and p (c |π)?

– The class label c is represented as a k -vector with a single one.
For example, a data point in the fourth class has c = 〈0, 0, 0, 1, 0, 0, 0〉.

– The second term is

p (x |c ,θ1:k ) =
k
∏

j=1

p (x |θj )c
j
. (9)

(Confirm that this equals the intended probability.)

– The distribution in πworks the same way. The parameter π is a k -vector of probabili-
ties that sum to one. The probability of selecting a particular class label is

p (c |π) =
k
∏

j=1

πc j

j . (10)

Note: the space of positive vectors that sum to one is called the simplex.

– As we’ll see, this representation helps in fitting the model.

• In fitting, we want to find the class parameters θk and class proportions π from a data set
of labeled observations.

• In prediction, we use fitted parameters to predict the label of an unlabeled data point. We
need to compute p (c |x ).

• Example #1 : Gaussian classification

– Let’s say the data are continuous.

– To be concrete, suppose each x i is an image, with a vector real-valued image features
measured on it. (E.g., these might be texture, color histogram, etc.)

– Suppose each class is described by a Gaussian, where θk =µk and x |θk ∼N (µk ,σ2).
(Each shares the same variance, for simplicity.)

– In fitting, we’d find the Gaussian distributions that best describe each class.

– In prediction, we can take new images and classify them.

• Example #2 : Multinomial classification

– Let’s say the data are discrete.
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– To be concrete, suppose each x i is a document, i.e., a collection of observed words
from a vocabulary.

– Suppose each class is described by a multinomial distribution. In this case, θk is
a distribution over terms and we assume the words of each document are drawn
independently from that distribution. That is,

p (x |θk ) =
∏̀

j=1

θk ,x j , (11)

where x j is the j th word in document x (of length `).

– Actually, we’ll use the “selection” mechanism here too. This lets us see how the
probability is only a function of the count of each word. (For this reason, models like
this are often called “bag of words” models.)

– First, write down the previous equation in this form

p (x |θk ) =
∏̀

j=1

V
∏

v=1

θ
x v

j

k v (12)

– How many times does θk v appear in this product? The number of times v appears in
x . This gives our final expression for the probability of document x ,

p (x |θk ) =
V
∏

v=1

θ n v (x )
k v , (13)

where n v (x ) is the number of times term v occurred in x .

– This is sometimes called a “Naive Bayes” classifier. (It’s a silly name: Most models are
naive and there isn’t much Bayesian about this one.)

Prediction

• In prediction we are given the parameters, θ1:K and π, and an unlabeled data point x . We
want to predict the label for x .

• We use Bayes rule to compute the posterior distribution of the label

P(C |x )∝ P(x |C )P(C ). (14)

This is proportional because the denominator p (x ) is constant with respect to C .

• For each possible label,
p (c |x )∝ p (x |θc )πc (15)
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• The precise form of the first term depends on the class-conditional data model.

• In the Gaussian case (with fixed variance) notice that

p (c |x )∝
�

1

2σ2
(x −µc )2

�

πc . (16)

Everything else is constant with respect to the class label c .

• This equation says that we look at the squared difference between x and each class,
weighted by the prior probability of that class.

• In the multinomial case, for each class we consider the probability that x was “generated”
by its parameter, weighted again by the prior probability of each class,

p (c |x )∝

 

V
∏

v=1

θ n v (x )
c v

!

πc (17)

• In practice, we can take the label of maximum posterior probability. Or we can compute
the probabilies and report a distribution.

Fitting

• Now we turn to the problem of finding parameters given data. We will find maximum
likelihood estimates of the class conditional distributions θ1:K and the class proportions π.

• The labeled data set is {x i , c i }ni=1. E.g.,

– Labeled images

– Labeled documents

– Labeled genes

– Labeled songs

• Taking the log of the product of joint distributions p (c i )p (x i |c i ), the log likelihood is

L (π,θ1:K ) =
n
∑

i=1

k
∑

j=1

c j
i logπj + c j

i log p (x i |θj ) (18)
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• Finding the MLEs of π and θ1:K decomposes into K +1 MLE problems.

• First, the MLE of the class proportions is

π̂= arg max
π

n
∑

i=1

k
∑

j=1

c j
i logπj (19)

This is simply the empirical proportion of each class

π̂j =

∑n
i=1 c j

i

n
, (20)

where the numerator is the number of times we saw class j .

• The MLE of each class conditional parameter is

θ̂j = arg max
θj

n
∑

i=1

c k
i log p (x i |θj ). (21)

Notice that

– Only the points labeled with class j play a role in this objective function.

– This is like taking a simple MLE of those points, drawn IID from θj .

– Operationally, take each class and compute the MLE of its parameter from the data
assigned to it. In a Bernoulli case, compute the probability of heads. In a Guassian
case, compute the empirical mean and variance.

Example: Simple Gaussian classification

• The data are average RGB values for images.

– Whole images are summarized in a single color

• Draw the graphical model

– Write the joint

– Write the MLEs

– Write the posterior given a new image

• Show the demo
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Example: Multinomial classification

• Given labeled data, we can fit a model and classify new data points.

• This strategy is common in classifying documents. To review:

– x i is a collection of word counts.

– x u
i is the number of times word u occurred.

– The class conditional parameter is a point on the term simplex,

θk u > 0 (22)
∑v

u=1θk u = 1. (23)

– The class conditional probability is

p (x v
i |θk ) =

v
∏

u=1

θ x i u

k u (24)

– This assumes that the collection of words came IID from θk . (You can confirm this.)

• To complete the algorithm, we only need the MLE of θj from the collection of documents.

• This is the proportion of times that each word occurred in each class j document:

θ̂ u
j =

∑n
i=1 c j

i x u
i

∑n
i=1 c j

i

∑v
w=1 x w

i

. (25)

– Numerator: The number of times word u occurred in documents of class j

– Denominator: The number of words that occurred in documents of class j

• What happens if a test document contains a word that we never saw in training?

• In text models, we often smooth the parameter estimates.

– The simplest smoother is to add a “pseudocount” to each word (such as one) before
computing the MLE.

– What does this do to the probabilities of frequent words? rare words?

– Smoothing gets more complicated than that.

• It has interesting connections to
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– Bayesian statistics: it can be construed as assuming the distribution came from a
prior and then computing the posterior expectation of that distribution

– WWII history: A. Turing and I. J. Good developed smoothing to break the Nazi code.

• TODO: Implementing

– The log trick
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