Hidden Markov models

David M. Blei

March 12, 2012

Markov chains

- We now consider data that are not IID. In particular, we consider sequential data.
- The idea behind a *Markov chain* is that the distribution of data at time *t* depends on the data at time *t* − 1.
- What kind of data can be modeled sequentially?
 - Language
 - Genetic data
 - Gesture data
 - Location data
- Now this data is often more complicated than simply sequential. Sequential models make the data dependent while limiting the complexity of computing about it.
- A Markov chain of *T* variables has this joint distribution

$$p(x_1,...,x_T) = p(x_1) \prod_{t=2}^T p(x_t | x_{t-1})$$
(1)

- The parameters are
 - A transition matrix A
 - An initial distribution π
- Assume that x_t is discrete and takes values from K items.

- (Draw the intitial distribution as a *K*-vector.)
- (Draw the transition matrix as a $K \times K$ matrix.)
- (Draw the graphical model.)
- A Markov chain can be summarized with this independence:

$$x_{t+1} \perp x_{t-1} \mid x_t \tag{2}$$

"The future is independent of the past given the present."

• (Show this independence on the graphical model.)

Cool examples

- Cool example: Google
 - PageRank is based on a Markov chain.
 - Search for a query.
 - Return web results. (Dots on the board.)
 - These results are part of a network. (Edges on the board.)
 - Imagine a surfer traversing that network. This is a MC.
 - The "stationary distribution" determines the PageRank.
 - (Sketch the idea of a stationary distribution.)
 - (Note: It relates to the eigenvectors of the transition probabilities.)
- Another cool example : *n*-grams
 - Consider x_t to be a word
 - What does the transition matrix measure?
 - The probability of each word following another.
 - This is the *bigram* distribution of English.
 - Suppose the next word depended on the last 5 words
 - * This is called a 5-gram distribution.
 - * What happens to the transition "matrix"?
 - * Recall smoothing. Why is it more of a problem here?
 - Claude Shannon discussed bigrams in 1948 and *sampled* from the distribution:
 - 1. Pick up a book and opened a random page.

- 2. Pick a random word.
- 3. Pick up another book and opened a random page.
- 4. Read that book until you find the word from the last book.
- 5. Mark the next word.
- 6. Repeat.
- We'll come back to these.

Hidden Markov models

- Here is a sequence of observations
 - (Draw 1d HMM observations.)
 - (Constrain the transition to move between two states from each.)
- This is contrived, but it's a *hidden Markov model*.
- The idea is that a sequence of latent class labels are drawn from a Markov chain. The data arise, as in a mixture model, from components associated with each latent class.
- (Draw the graphical model with $z_{1:T}$ and $x_{1:T}$.)
- The generative process is
 - 1. Draw $z_1 \sim \pi$
 - 2. For $t \in \{2, ..., T\}$
 - (a) Draw $z_t | z_{t-1} \sim A_{z_t}$.
 - (b) Draw $x_t | z_t \sim \theta_{z_t}$.
- Through the latent classes, the data exhibit a sequential structure.
- Discuss the parameters
 - Transition probabilities move from latent class to latent class. In HMMs nomenclature, the latent class variables are called *states*.
 - Emission probabilities are the *K* data-generating distributions, e.g., Gaussian or multinomial or something else.
 - Initial probabilities give the distribution over initial states with which to launch the chain.
- Examples. (Discuss each a little bit.)

- Speech recognition
- Part of speech tagging
- Handwriting recognition
- DNA analysis
- Gesture recognition, e.g., Piazza post and bee dances.
- Discuss speech recognition in detail
 - Speech recognition is a success story for the HMM.
 - Latent states are words
 - Observations are the signal. (Segmenting is a separate problem.)
 - The transition distribution is a bigram distribution of words.
 - The observation probabilities reflect the distribution of signal for each possible word.
 - The intuition is that when I say "I'm going to [unintelligable] Michigan" and United Airlines only flies to Detroit, then knowing "Michigan" tells me a lot (via the bigram distribution) about which city I said.
 - Independent inferences wouldn't capture this.
 - Note: This is not exactly HMMs, which are purely unsupervised methods. Rather, this is like "supervised sequential classification."
- Discuss the joint distribution in detail. (See written notes.)
- Discus the close relationship to mixture models.

Computing with HMMs

- With these examples in mind, let's discuss how to compute about HMMs.
- As usual—cf classification, mixtures—there are two tasks: prediction and estimation.
- To estimate an HMM we use EM. (Why? Because there are hidden variables.) Prediction is part of the EM procedure.
- Here, things won't be as simple as in the other cases. The hidden variables are *dependent* on each other. Managing dependencies well a theme in computation with graphical models.
- (Switch to written notes.)

Bigger picture

- HMMs illustrate the modularity of graphical models.
- But, note that the complexity of inference is affected by the structure of the joint distribution. (More on this is in COS513.)
- HMMs also illustrate how EM is a general purpose strategy for fitting hidden variable models with maximum likelihood.

Extensions of HMMs

(See written notes.)