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Markov chains

• We now consider data that are not IID. In particular, we consider sequential data.

• The idea behind a Markov chain is that the distribution of data at time t depends on the
data at time t −1.

• What kind of data can be modeled sequentially?

– Language

– Genetic data

– Gesture data

– Location data

• Now this data is often more complicated than simply sequential. Sequential models make
the data dependent while limiting the complexity of computing about it.

• A Markov chain of T variables has this joint distribution

p (x1, . . . ,xT ) = p (x1)
T
∏

t=2

p (x t |x t−1) (1)

• The parameters are

– A transition matrix A

– An initial distribution π

• Assume that x t is discrete and takes values from K items.
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– (Draw the intitial distribution as a K -vector.)

– (Draw the transition matrix as a K ×K matrix.)

• (Draw the graphical model.)

• A Markov chain can be summarized with this independence:

x t+1 ⊥⊥ x t−1 |x t (2)

“The future is independent of the past given the present.”

• (Show this independence on the graphical model.)

Cool examples

• Cool example: Google

– PageRank is based on a Markov chain.

– Search for a query.

– Return web results. (Dots on the board.)

– These results are part of a network. (Edges on the board.)

– Imagine a surfer traversing that network. This is a MC.

– The “stationary distribution” determines the PageRank.

– (Sketch the idea of a stationary distribution.)

– (Note: It relates to the eigenvectors of the transition probabilities.)

• Another cool example : n-grams

– Consider x t to be a word

– What does the transition matrix measure?

– The probability of each word following another.

– This is the bigram distribution of English.

– Suppose the next word depended on the last 5 words

∗ This is called a 5-gram distribution.

∗ What happens to the transition “matrix”?

∗ Recall smoothing. Why is it more of a problem here?

– Claude Shannon discussed bigrams in 1948 and sampled from the distribution:

1. Pick up a book and opened a random page.
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2. Pick a random word.

3. Pick up another book and opened a random page.

4. Read that book until you find the word from the last book.

5. Mark the next word.

6. Repeat.

– We’ll come back to these.

Hidden Markov models

• Here is a sequence of observations

– (Draw 1d HMM observations.)

– (Constrain the transition to move between two states from each.)

• This is contrived, but it’s a hidden Markov model.

• The idea is that a sequence of latent class labels are drawn from a Markov chain. The data
arise, as in a mixture model, from components associated with each latent class.

• (Draw the graphical model with z 1:T and x1:T .)

• The generative process is

1. Draw z 1 ∼π
2. For t ∈ {2, . . . , T }

(a) Draw z t |z t−1 ∼ Az t .

(b) Draw x t |z t ∼ θz t .

• Through the latent classes, the data exhibit a sequential structure.

• Discuss the parameters

– Transition probabilities move from latent class to latent class. In HMMs nomencla-
ture, the latent class variables are called states.

– Emission probabilities are the K data-generating distributions, e.g., Gaussian or
multinomial or something else.

– Initial probabilities give the distribution over initial states with which to launch the
chain.

• Examples. (Discuss each a little bit.)
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– Speech recognition

– Part of speech tagging

– Handwriting recognition

– DNA analysis

– Gesture recognition, e.g., Piazza post and bee dances.

• Discuss speech recognition in detail

– Speech recognition is a success story for the HMM.

– Latent states are words

– Observations are the signal. (Segmenting is a separate problem.)

– The transition distribution is a bigram distribution of words.

– The observation probabilities reflect the distribution of signal for each possible word.

– The intuition is that when I say “I’m going to [unintelligable]Michigan” and United
Airlines only flies to Detroit, then knowing “Michigan” tells me a lot (via the bigram
distribution) about which city I said.

– Independent inferences wouldn’t capture this.

– Note: This is not exactly HMMs, which are purely unsupervised methods. Rather, this
is like “supervised sequential classification.”

• Discuss the joint distribution in detail. (See written notes.)

• Discus the close relationship to mixture models.

Computing with HMMs

• With these examples in mind, let’s discuss how to compute about HMMs.

• As usual—cf classification, mixtures—there are two tasks: prediction and estimation.

• To estimate an HMM we use EM. (Why? Because there are hidden variables.) Prediction is
part of the EM procedure.

• Here, things won’t be as simple as in the other cases. The hidden variables are dependent on
each other. Managing dependencies well a theme in computation with graphical models.

• (Switch to written notes.)
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Bigger picture

• HMMs illustrate the modularity of graphical models.

• But, note that the complexity of inference is affected by the structure of the joint distribu-
tion. (More on this is in COS513.)

• HMMs also illustrate how EM is a general purpose strategy for fitting hidden variable
models with maximum likelilhood.

Extensions of HMMs

(See written notes.)
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