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Markov chains

e We now consider data that are not IID. In particular, we consider sequential data.

The idea behind a Markov chain is that the distribution of data at time ¢ depends on the
data at time ¢ — 1.

What kind of data can be modeled sequentially?

Language

Genetic data

Gesture data

Location data

Now this data is often more complicated than simply sequential. Sequential models make
the data dependent while limiting the complexity of computing about it.

A Markov chain of T variables has this joint distribution
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The parameters are

— A transition matrix A

— An initial distribution 7

Assume that x; is discrete and takes values from K items.



— (Draw the intitial distribution as a K-vector.)

— (Draw the transition matrix as a K x K matrix.)
e (Draw the graphical model.)

e A Markov chain can be summarized with this independence:
Xep1 Lx, | x; 2)

“The future is independent of the past given the present.”

¢ (Show this independence on the graphical model.)

Cool examples

e Cool example: Google

PageRank is based on a Markov chain.

Search for a query.

Return web results. (Dots on the board.)

These results are part of a network. (Edges on the board.)

Imagine a surfer traversing that network. This is a MC.

The “stationary distribution” determines the PageRank.

(Sketch the idea of a stationary distribution.)

(Note: It relates to the eigenvectors of the transition probabilities.)

e Another cool example : n-grams

Consider x; to be a word

What does the transition matrix measure?

The probability of each word following another.

This is the bigram distribution of English.

Suppose the next word depended on the last 5 words
* This is called a 5-gram distribution.
* What happens to the transition “matrix”?
* Recall smoothing. Why is it more of a problem here?

Claude Shannon discussed bigrams in 1948 and sampled from the distribution:

1. Pick up a book and opened a random page.
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Pick a random word.

Pick up another book and opened a random page.

Read that book until you find the word from the last book.
Mark the next word.

6. Repeat.
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— We'll come back to these.

Hidden Markov models

e Here is a sequence of observations

— (Draw 1d HMM observations.)

— (Constrain the transition to move between two states from each.)

This is contrived, but it’s a hidden Markov model.

The idea is that a sequence of latent class labels are drawn from a Markov chain. The data
arise, as in a mixture model, from components associated with each latent class.

(Draw the graphical model with z;.7 and x;.7.)

The generative process is

1. Drawz; ~ 7

2. Fortef2,...,T}
(@) Draw z;|z;-1 ~A,,.
(b) Draw x;|z; ~6,,.

e Through the latent classes, the data exhibit a sequential structure.

e Discuss the parameters
- Transition probabilities move from latent class to latent class. In HMMs nomencla-
ture, the latent class variables are called states.

- Emission probabilities are the K data-generating distributions, e.g., Gaussian or
multinomial or something else.

- Initial probabilities give the distribution over initial states with which to launch the
chain.

e Examples. (Discuss each a little bit.)



Speech recognition

Part of speech tagging
Handwriting recognition
DNA analysis

Gesture recognition, e.g., Piazza post and bee dances.

¢ Discuss speech recognition in detail

Speech recognition is a success story for the HMM.

Latent states are words

Observations are the signal. (Segmenting is a separate problem.)

The transition distribution is a bigram distribution of words.

The observation probabilities reflect the distribution of signal for each possible word.

The intuition is that when I say “I'm going to [unintelligable] Michigan” and United
Airlines only flies to Detroit, then knowing “Michigan” tells me a lot (via the bigram
distribution) about which city I said.

Independent inferences wouldn’t capture this.

Note: This is not exactly HMMs, which are purely unsupervised methods. Rather, this
is like “supervised sequential classification.”

¢ Discuss the joint distribution in detail. (See written notes.)

e Discus the close relationship to mixture models.

Computing with HMMs

e With these examples in mind, let’s discuss how to compute about HMMs.

As usual—cf classification, mixtures—there are two tasks: prediction and estimation.

To estimate an HMM we use EM. (Why? Because there are hidden variables.) Prediction is
part of the EM procedure.

Here, things won't be as simple as in the other cases. The hidden variables are dependent on
each other. Managing dependencies well a theme in computation with graphical models.

(Switch to written notes.)



Bigger picture

e HMMs illustrate the modularity of graphical models.

¢ But, note that the complexity of inference is affected by the structure of the joint distribu-
tion. (More on this is in COS513.)

e HMMs also illustrate how EM is a general purpose strategy for fitting hidden variable
models with maximum likelilhood.

Extensions of HMMs

(See written notes.)



