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Generalized Linear Models
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e Linear regression and logistic regression are both linear models. The
coefficient B enters the distribution of y, through a linear combination of x.

e Both are amenable to regularization via a Bayesian prior.

e Call x, the input and y, the response.

o Linear regression: Real-valued response
o Logistic regression: Binary response

e These ideas can be generalized to many kinds of response variables with
generalized linear models.

o E.g., categorical, positive real, positive integer, ordinal



The exponential family

e A probability density in the exponential family has this form

p(x1n) = h(x)expin " t(x) —a(n)},

where

n is the natural parameter

t(x) are sufficient statistics

h(x) is the “underlying measure”, ensures x is in the right space
a(n) is the log normalizer

e Examples: Gaussian, Gamma, Poisson, Bernoulli, Multinomial

e Distributions not in this family: Chi-Squared, Student-t



The log normalizer

p(xIn) = h(x)expin" t(x) - a(n)}

e The log normalizer ensures that the density integrates to 1,

() =10 f () exoln ™ t(x)}ox

e This is the negative logarithm of the normalizing constant.



Example: Bernoulli

The Bernoulli you are used to seeing is
p(x|n)=m*(1—-7n)""* xe{0,1}
In exponential family form

p(x|m) = expilogm*(1—m)"*}
expixlogm + (1 —x)log(1 —m)}

expixlogm — xlog(1— ) +log(1— )}
= expixlog(n/(1—m))+log(1— )}



Example: Bernoulli (cont)

p(x|n) = h(x)expin ' t(x) — a(n)}

This form reveals the exponential family

p(x|7) =expixlog(7/(1—m))+log(1—m)},

where
e n=log(n/(1—m))
o t(x)=x

e a(n) =—log(1—m)=log(1 + ")
e h(x)=1



Log normalizer of the Bernoulli

e We express the log normalizer as a function of ).

¢ Recall that n =log(7r/1—m)) and a(n) = —log(1 — ).

log(1+¢e7) = log(1+n/(1—7))
log((1—m+m)/(1—m))
log(1/(1—m))

= —log(1—7)

e The relationship between 7 and 7 is invertible
r=1/(1+e)

This is the logistic function.



Moments of the exponential family

Derivatives of a(n) give moments of the sufficient statistics.

Vya = Vn{logfexp{nTt(x)}h(x)dx}
V, [ expinTt(x)}h(x)dx
f exp{n " t(x)}h(x)dx
_ o ePn Tt x)Ih(x)
= ™ [ exp{nTt(x)}h(x)dxd
= Eylt(X)]

Higher order derivatives give higher order moments.



Mean parameters and natural paramaters

e This expectation tells us that the mean parameter E[t(X)] and natural
parameter 1 have a 1-1 relationship.

» We saw this with the logistic function, where note that 7 = E[X] (because
X is an indicator).

e Thereis a 1 —1 relationship between E[t(X)] and 7.
o Var(t(X)) = V2a, is positive.
e — a(n) is convex.
e — 1-1 relationship between its argument and first derivative

o Notation for later

o The mean parameter is u = E[t(X)].
 The inverse map is (), gives the 1 such that E[¢(X)] = u.



Maximum likelihood estimation of an exponential family

The data are 2 = {x,}"_,. We want to find the value of 1) that maximizes the
likeihood. The log likelihood is

N
£ = logp(xIn)
n=1

N

= > (logh(x) +n" t(xa) —a(n))

n=1

N
= Z log h(xn) + n' Zga t(xn) —N-a(n)
n=1
, I N
As a function of 1), the log likelihood only depends on >, t(xy).
e Has fixed dimension; no need to store the data.

e Is sufficient for 7).



Maximum likelihood estimation of an exponential family

<z = Z log h(xn) +n" 25:1 t(xn) —a(n)

n=1

e Take the gradient and set to zero:
N
Vol = Hxs)—NVya(n)
n=1

e |t's easy to solve for the mean parameter:

25:1 t(xn)

UML = N

e The inverse map gives us the natural parameter:

nMmL = w(.UML)



Bernoulli MLE

e |t's easy to solve for the mean parameter:

Zg:1 t(xn)

UML = N

e The inverse map gives us the natural parameter:

ML = Y (Um)

e Consider the Bernoulli. . is just the sample mean. The natural
parameter is the corresponding log odds.



Back to GLMs
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¢ |dea behind logistic and linear regression: The conditional expectation of y,
depends on x, through a function of a linear relationship,

E[yn|xﬂ'ﬁ] = f(ﬁTXn) =Un

e linear regression: f is the identity.
o logistic regression: f is the logistic.

e Endow y, with a distribution that depends on u.

e linear regression: Gaussian
o logistic regression: Binary



Generalized linear models

p(ynlXn) = h(yn)expin, yn—a(nn)
Nn = w(ﬂn)
Un = f(ﬁTXn)

e Input x, enters the model through " x,

e The conditional mean u, is a function f(8 7 x,)
called the response function or link function.

e Response y, has conditional mean .
e Its natural parameter is denoted 1, = v'(n)

e Lets us build probabilistic predictors of many kinds of responses



Generalized linear models

p(yalxa) = h(yn)expin, t(ys) —a(nn)
N = Y(un)
Un = f(ﬁTXn)

e Two choices:

© Exponential family for response y,
® Response function f( T x,)

e The family is usually determined by the form of y,,.
e The response function:

e Somewhat constrained—must give a mean in the right space
o But also offers freedom, e.g., probit or logistic



The canonical response function

p(yalxa) = h(yn)expin t(yn)—a(nn)
N = Y(un)
Un = f(ﬁTXn)

e The canonical response function is f =)=, which maps a natural
parameter to the conditional mean that gives that natural parameter.

e Means that the natural parameter is /5Tx,,,

P(¥nlXn) = h(yn) exp{(/J’Tx,,)Tt(y,,) —a(nn)}

e Examples: logistic (binary) and identity (real)



Another important perspective

p(ynlxa) = h(yn)expin t(yn)—a(nn)
Nnn = w(.un)
Un = f(ﬁTXn)

e We can also think about this as
Yn= f(ﬁTXn) + €n,

where €, is a zero-mean error term.
e [3 is the systematic component; €, is the random component.

o Different response types lead to different error distributions.



Fitting a GLM

* The data are input/response pairs {Xn, yn}_,
e The conditional likelihood is
N

£(B)= Z h(yn) + n:,—t(Yn) —a(nn),
n=1
and recall that 1), is a function of 8 and x, (via f and ).
e Define each term to be £,,. The gradient is

N
Vel = D Vo, LaVpin
n=1
N
= D (t(yn) — V,a(10)) V1
n=1
N

= > (t(ym) ~ELY 130 B1) (V11 10) (Vo 1) %o

n=1



Fitting a GLM with canonical response

e In a canonical GLM, n, = /3Tx,, and

VpL =Y (t(yn) —E[Y %0 B])xn

n=1

e Recall logistic and linear regression derivatives.



