Generalized Linear Models and Exponential Families

David M. Blei

COS424
Princeton University

April 12, 2012
Generalized Linear Models

- Linear regression and logistic regression are both **linear models**. The coefficient β enters the distribution of y_n through a linear combination of x_n.

- Both are amenable to regularization via a Bayesian prior.

- Call x_n the **input** and y_n the **response**.
 - Linear regression: Real-valued response
 - Logistic regression: Binary response

- These ideas can be generalized to many kinds of response variables with **generalized linear models**.
 - E.g., categorical, positive real, positive integer, ordinal
A probability density in the exponential family has this form

\[p(x \mid \eta) = h(x) \exp\{\eta^\top t(x) - a(\eta)\}, \]

where

- \(\eta \) is the natural parameter
- \(t(x) \) are sufficient statistics
- \(h(x) \) is the “underlying measure”, ensures \(x \) is in the right space
- \(a(\eta) \) is the log normalizer

Examples: Gaussian, Gamma, Poisson, Bernoulli, Multinomial

Distributions not in this family: Chi-Squared, Student-t
The log normalizer

\[p(x \mid \eta) = h(x) \exp\{\eta^\top t(x) - a(\eta)\} \]

- The log normalizer ensures that the density integrates to 1,

\[a(\eta) = \log \int h(x) \exp\{\eta^\top t(x)\} dx \]

- This is the negative logarithm of the normalizing constant.
Example: Bernoulli

The Bernoulli you are used to seeing is

\[p(x | \pi) = \pi^x (1 - \pi)^{1-x} \quad x \in \{0, 1\} \]

In exponential family form

\[
\begin{align*}
 p(x | \pi) &= \exp\{\log \pi^x (1 - \pi)^{1-x}\} \\
 &= \exp\{x \log \pi + (1 - x) \log(1 - \pi)\} \\
 &= \exp\{x \log \pi - x \log(1 - \pi) + \log(1 - \pi)\} \\
 &= \exp\{x \log(\pi/(1 - \pi)) + \log(1 - \pi)\}
\end{align*}
\]
Example: Bernoulli (cont)

\[p(x | \eta) = h(x) \exp{\eta^\top t(x) - a(\eta)} \]

This form reveals the exponential family

\[p(x | \pi) = \exp\{x \log(\pi/(1 - \pi)) + \log(1 - \pi)\}, \]

where

- \(\eta = \log(\pi/(1 - \pi)) \)
- \(t(x) = x \)
- \(a(\eta) = -\log(1 - \pi) = \log(1 + e^\eta) \)
- \(h(x) = 1 \)
Log normalizer of the Bernoulli

- We express the log normalizer as a function of η.
- Recall that $\eta = \log(\pi/1 - \pi)$ and $a(\eta) = -\log(1 - \pi)$.

$$
\log(1 + e^\eta) = \log(1 + \pi/(1 - \pi))
\quad = \log((1 - \pi + \pi)/(1 - \pi))
\quad = \log(1/(1 - \pi))
\quad = -\log(1 - \pi)
$$

- The relationship between π and η is invertible

$$
\pi = 1/(1 + e^{-\eta})
$$

This is the **logistic function**.
Moments of the exponential family

Derivatives of \(a(\eta) \) give moments of the sufficient statistics.

\[
\nabla_\eta a = \nabla_\eta \left\{ \log \int \exp\{\eta^\top t(x)\} h(x) \, dx \right\} \\
= \frac{\nabla_\eta \int \exp\{\eta^\top t(x)\} h(x) \, dx}{\int \exp\{\eta^\top t(x)\} h(x) \, dx} \\
= \int t(x) \frac{\exp\{\eta^\top t(x)\} h(x)}{\int \exp\{\eta^\top t(x)\} h(x) \, dx} \, dx \\
= \mathbb{E}_\eta [t(X)]
\]

Higher order derivatives give higher order moments.
Mean parameters and natural parameters

- This expectation tells us that the mean parameter $E[t(X)]$ and natural parameter η have a 1-1 relationship.

- We saw this with the logistic function, where note that $\pi = E[X]$ (because X is an indicator).

- There is a 1-1 relationship between $E[t(X)]$ and η.
 - $\text{Var}(t(X)) = \nabla^2 a_\eta$ is positive.
 - $\rightarrow a(\eta)$ is convex.
 - \rightarrow 1-1 relationship between its argument and first derivative

- Notation for later
 - The mean parameter is $\mu = E[t(X)]$.
 - The inverse map is $\psi(\mu)$, gives the η such that $E[t(X)] = \mu$.
The data are $\mathcal{D} = \{x_n\}_{n=1}^N$. We want to find the value of η that maximizes the likelihood. The log likelihood is

$$
\mathcal{L} = \sum_{n=1}^N \log p(x_n | \eta)
= \sum_{n=1}^N \left(\log h(x_n) + \eta^\top t(x_n) - a(\eta) \right)
= \sum_{n=1}^N \log h(x_n) + \eta^\top \sum_{n=1}^N t(x_n) - N \cdot a(\eta)
$$

As a function of η, the log likelihood only depends on $\sum_{n=1}^N t(x_n)$.

- Has fixed dimension; no need to store the data.
- Is sufficient for η.
Maximum likelihood estimation of an exponential family

\[\mathcal{L} = \sum_{n=1}^{N} \log h(x_n) + \eta^\top \sum_{n=1}^{N} t(x_n) - a(\eta) \]

- Take the gradient and set to zero:
 \[\nabla_\eta \mathcal{L} = \sum_{n=1}^{N} t(x_n) - N\nabla_\eta a(\eta) \]
- It’s easy to solve for the mean parameter:
 \[\mu_{ML} = \frac{\sum_{n=1}^{N} t(x_n)}{N} \]
- The inverse map gives us the natural parameter:
 \[\eta_{ML} = \psi(\mu_{ML}) \]
It's easy to solve for the mean parameter:

\[\mu_{ML} = \frac{\sum_{n=1}^{N} t(x_n)}{N} \]

The inverse map gives us the natural parameter:

\[\eta_{ML} = \psi(\mu_{ML}) \]

Consider the Bernoulli. \(\mu_{ML} \) is just the sample mean. The natural parameter is the corresponding log odds.
Idea behind logistic and linear regression: The conditional expectation of y_n depends on x_n through a function of a linear relationship,

$$E[y_n | x_n, \beta] = f(\beta^\top x_n) = \mu_n$$

- linear regression: f is the identity.
- logistic regression: f is the logistic.

Endow y_n with a distribution that depends on μ_n.
- linear regression: Gaussian
- logistic regression: Binary
Generalized linear models

\[p(y_n \mid x_n) = h(y_n) \exp \{ \eta_n^T y_n - a(\eta_n) \} \]
\[\eta_n = \psi(\mu_n) \]
\[\mu_n = f(\beta^T x_n) \]

- Input \(x_n \) enters the model through \(\beta^T x_n \).
- The conditional mean \(\mu_n \) is a function \(f(\beta^T x_n) \) called the response function or link function.
- Response \(y_n \) has conditional mean \(\mu_n \).
- Its natural parameter is denoted \(\eta_n = \psi(\mu_n) \).
- Lets us build probabilistic predictors of many kinds of responses.
Generalized linear models

\[p(y_n|x_n) = h(y_n) \exp\{\eta_n^\top t(y_n) - a(\eta_n)\} \]

\[\eta_n = \psi(\mu_n) \]

\[\mu_n = f(\beta^\top x_n) \]

- Two choices:
 1. Exponential family for response \(y_n \)
 2. Response function \(f(\beta^\top x_n) \)

- The family is usually determined by the form of \(y_n \).

- The response function:
 - Somewhat constrained—must give a mean in the right space
 - But also offers freedom, e.g., probit or logistic
The canonical response function

\[p(y_n | x_n) = h(y_n) \exp\{\eta_n^\top t(y_n) - a(\eta_n)\} \]
\[\eta_n = \psi(\mu_n) \]
\[\mu_n = f(\beta^\top x_n) \]

- The **canonical response function** is \(f = \psi^{-1} \), which maps a natural parameter to the conditional mean that gives that natural parameter.
- Means that the natural parameter is \(\beta^\top x_n \),

\[p(y_n | x_n) = h(y_n) \exp\{((\beta^\top x_n)^\top t(y_n) - a(\eta_n))\} \]
- Examples: logistic (binary) and identity (real)
Another important perspective

\[p(y_n | x_n) = h(y_n) \exp\{\eta_n^\top t(y_n) - a(\eta_n)\} \]
\[\eta_n = \psi(\mu_n) \]
\[\mu_n = f(\beta^\top x_n) \]

- We can also think about this as

\[y_n = f(\beta^\top x_n) + \epsilon_n, \]

where \(\epsilon_n \) is a zero-mean error term.

- \(\beta \) is the **systematic component**; \(\epsilon_n \) is the **random component**.
- Different response types lead to different error distributions.
Fitting a GLM

- The data are input/response pairs \(\{x_n, y_n\}_{n=1}^N \)
- The conditional likelihood is

\[
\mathcal{L}(\beta) = \sum_{n=1}^N h(y_n) + \eta_n^\top t(y_n) - a(\eta_n),
\]

and recall that \(\eta_n \) is a function of \(\beta \) and \(x_n \) (via \(f \) and \(\psi \)).
- Define each term to be \(\mathcal{L}_n \). The gradient is

\[
\nabla_\beta \mathcal{L} = \sum_{n=1}^N \nabla_{\eta_n} \mathcal{L}_n \nabla_\beta \eta_n
\]

\[
= \sum_{n=1}^N (t(y_n) - \nabla_{\eta_n} a(\eta_n)) \nabla_\beta \eta_n
\]

\[
= \sum_{n=1}^N (t(y_n) - \mathbb{E}[Y | x_n, \beta]) (\nabla_{\mu_n} \eta_n) (\nabla_{\theta_n} \mu_n) x_n
\]
In a canonical GLM, \(\eta_n = \beta^T x_n \) and

\[
\nabla_\beta \mathcal{L} = \sum_{n=1}^{N} (t(y_n) - \mathbb{E}[Y| x_n, \beta]) x_n
\]

Recall logistic and linear regression derivatives.