Computational Geometry Lecture Notes
Voronoi Diagrams

Valerie Barr, Hava Siegelmann, Gabor Sarkozy (1990)
Michael Horn, Julie Weber (2004)

April 29, 2004

1 Voronoi Diagrams

Consider the following problem. To determine the route for its carriers, the
U.S. Post Office must decide which of its local offices is closest to a given point.
Voronoi diagrams can used to solve this problem and many others including
Closest Pair, All Nearest Neighbors, Euclidian Minimum Spanning Tree, and
Triangulation problems.




2 Definitions

Given a set of S points p1,pa, ..., p, in the plane, a Voronoi diagram divides
the plane into n Voronoi regions with the following properties:

e Each point p; lies in exactly one region.

e If a point ¢ ¢ S lies in the same region as p;, then the Euclidian distance
from p; to ¢ will be shorter than the Euclidian distance from p; to g, where
p; is any other point in S.

The points p1,...,p, are called Voronoi sites. The Voronoi diagram for two
sites p; and p; can be easily constructed by drawing the perpendicular bisector
of line segment D;p;.

Such a diagram would consist of two unbounded Voronoi regions, denoted V (p;)
and V(p;). In general, a Voronoi region V(p;) is defined as the intersection of
n — 1 half-planes formed by taking the perpendicular bisector of the segment
Dip; for all p; € S where @ # j.

V(pi) = H(pip1) N H(pip2) N...N0 H(pipn)



In this notation, H (p;p;) refers to the half-plane formed by taking the perpendic-
ular bisector of p;p;. We know that the intersection of any number of half-planes
forms a convex region bounded by a set of connected line segments. These line
segments form the boundaries of Voronoi regions and are called Voronoi edges.
The endpoints of these edges are called Voronoi vertices.

3 Properties of Voronoi Diagrams

e The number of Voronoi vertices is at most 2n — 5.
e The number of Voronoi edges is at most 3n — 6.

e Assuming general position', each Voronoi vertex is the common intersec-
tion point of exactly three edges.

o If site p; € S is the nearest neighbor of site p; € S, then the Voronoi
regions V(p;) and V(p;) will share a common edge.

e Region V(p) is unbounded iff p is an extreme point of S. That is, p will
be part of the convex hull of S.

Given a triangle Aabe, the perpendicular bisector of each edge will intersect at
a common point ¢ called the circumcenter. The circumcenter is equi-distant
from points a, b, ¢ and these points all lie on a circle with ¢ as its center. This
circle is called the circumcircle for triangle Aabc.

N

If a circumcircle is empty in its interior then, in a Voronoi diagram:

e a,b,c would be Voronoi sites

n this case, general position implies that no four points will lie on the same circle.



e ¢ would be a Voronoi vertex

e The perpendicular bisectors of Aabc would be Voronoi edges.

4 Delaunay Triangulation

A Delaunay Triangulation is a dual of a Voronoi diagram. In a Delaunay Tri-
angulation two Voronoi sites are connected by an arc iff V(p;) and V(p;) are
bounded by a common Voronoi edge. A Delaunay Triangulation has the follow-
ing properties:

e No two edges of the triangulation intersect in their interiors.

e For all triangles At of a triangulation, the circumcircle for At must be
empty in its interior. That is, no Voronoi sites will lie inside the circum-
circle for At.

5 Constructing Voronoi Diagrams

5.1 Naive Approach

A naive approach to construct of a Voronoi diagram is to determine the region
for each site, one at a time. Since each region is the intersection of n — 1 half-



planes, we can use an O(nlogn) half-plane intersection algorithm to determine
this region. Repeating for all n points, we have an O(n?logn) algorithm.

5.2 Divide and Conquer

To construct a Voronoi diagram using the divide and conquer method, first
partition the set of points S into two sets L and R based on x-coordinates.
Next, construct the Voronoi diagrams for the left and right subset Vor(L) and
Vor(R). Finally, merge the two diagrams to produce Vor(S). If the merge
step can be carried out in linear time, then the construction of Vor(S) can be
accomplished in O(nlogn) time.

A Voronoi region is unbounded if and only if its site is an extreme point (i.e.
on the convex hull). Note that as we compute the Voronoi diagram for each
subset, we can also compute the convex hull without aversely affecting the time
complexity. We use this fact in the merge step to find a starting point to stitch
together the left and right sub-diagrams. The merge algorithm works as follows:



VORONOI_MERGE (L, R)

1.
2.

Find bridges to merge the convex hulls, CH(L) and CH(R).

Suppose the bottom bridge connects points p € L and ¢ € R.

. Start with the perpendicular bisector of the bottom bridge pg.

Trace this bisector from —oo until it hits a Voronoi edge.

If the edge belongs to a Voronoi region from a point in L, call this
point p and proceed upwards along the perpendicular biscector of pg.

Otherwise, if the edge belongs to a Voronoi region from a point in R,
call this point ¢ and proceed upwards along the perpendicular bisector

of pq.

Repeat this process until the algorithm passes through the upper
bridge.

Finally, trim the left and right diagrams.
(a) If an intersected edge belongs to the left diagram, discard the
section of the edge to the right of the intersection point.

(b) Likewise, if an intersected edge belongs to the right diagram,
discard the section of the edge to teh left of the intersection
point.

Step 1: Compute the convex hull for the left and right set of points



and find the upper and lower bridges.

Step 2: Trace the perpendicular bisector of the lower bridge from —oco and find
the lowest intersection point with an edge of the left or right Voronoi diagram.
In this figure, the left and right Voronoi diagrams are shown overlaid on top of
one another. The edges of the right diagram are highlighted with a grey border.

Step 3: Working upward, find the stitch. At every new intersection of the stitch
and a Voronoi edge, recalculate the perpendicular bisector. Continue until the
stitch crosses the upper bridge, and there are mo remaining intersections.



Step 4: Trim the edges to complete the diagram. Remove everything from the
left diagram that falls to the right of the stitch. Likewise, remove everything
from the right diagram that falls to the left of the stitch.

5.3 Sweep Line

Given a set of points pi...p, in the plane, we want to construct their voronoi
diagram by sweeping a horizontal line across the points, keeping track of what
was seen along the way. In order to do this, we need to use an additional strategy
involving parabolas. Parabolas are useful in this sweep line problem because
for any point p;, there is a parabola separating p; from the sweep line in such a
way that every point on the parabola is equidistant from both p and the sweep
line. Thus, when the sweep line reaches a new point p;, we will know, based on
the parabola associated with each point, what the midpoint is between p; and

Dj-

Our algorithm will sweep a horizontal line from bottom to top, creating a
parabola for every point such that for any state of the sweep line, every point
is the focus of its parabola, and the directrix of the parabola is the sweep line
itself. As seen in the figure below, the parabola for a particular site becomes
wider as the sweep line continues its advance towards the top of the plane.



At any stage in the process, the algorithm resembles what we see below. Above
the sweep line is a set of unvisited sites, and every site below the sweep line has,
by an invariant of our algorithm, been visited already. The arcs closest to the
sweep line create a “wavefront,” blocking other arcs from view. The points in
the wavefront where arcs meet are called break points, and we note that each
break point is equidistant from its corresponding sites. Every point surpassed
by the wavefront is already known to belong to a specific voronoi region.

L
unexplored sites
L]

sweep ling P
breakpaints

wavefrunt/] \

Consider the following observations:



1. As the sweep progresses, a new arc (of some parabola) is added to the
wavefront only when the sweep line touches some site. This is called a
site event.

2. The only way that an arc can disappear from the wavefront is when two
other adjacent arcs intersect it at a common point. We call this a circle
event.

5.3.1 Data Structures

Because we are interested in both site events and circle events, we will use two
data structures to store the information retrieved throughout the process. The
first data structure will be a balanced binary tree T" used to store the wavefront.
Leaves of the tree will be the arcs making up the wavefront, and the internal
nodes of T' will be the breakpoints (intersections of arcs).

We will need the capability of performing the following operations on 7"

Insertions When a new arc is added to the wavefront, we must insert it into
tree T'.

Deletions When an arc becomes invisible to the sweep line it is no longer a
part of the wavefront and we must delete it from the tree.

Search For any vertical line we want to know which arc it intersects

The second data structure we wish to use is a priority queue @ to store the
events encountered. The operations we would like to use are the following;:

Insert We would like to be able to insert new events as they are found in the
process.

Delete After processing an event, it is no longer needed and we must delete it
from the queue.

Successor After an event is fully processed, we must process the next event in
the queue based on y-coordinate.

5.3.2 Complexity

Notice that in the worst case, there are 2n-1 arcs on the wavefront at any
time (this occurs when every arc on the wavefront but one is split by another

10



wavefront arc). Thus the balanced tree contains O(n) elements. Because each
of the operations we wish to perform on T takes no more than O(logn) time
and there are never more than O(n) elements in the tree, every operation of the
wavefront status data structure is bounded by O(logn).

We note that circle events can only occur with three consecutive arcs. Thus, in
a queue with at most n sites there are never more than n-2 circle events. Again
our queue has O(n) elements and so each of the operations takes no more than
O(logn) time.

Because there is a constant number of site events in Q and each operation takes
a constant amount of time, we see that like the divide and conquer algorithm,
this sweep line algorithm for determining the voronoi diagram over a set of n
points runs in O(nlogn) time.

LB

11



VORONOI_SWEEP (P)
Input. A set P = (p1,pa, ..., pn) of points in the plane.
Output. The Voronoi diagram Vor(P).

1. Initialize a priority queue @) with site events sorted by increasing x-
coordinate; initialize an empty status structure 7'

2. While @ is nonempty:

(a) Pop the next event g off of @ (smallest y-coordinate)
(b) If ¢ is a site event X:

i.

ii.

iii.

iv.

If T is empty then insert ¢ into 7" and return. Otherwise
follow steps ii through iv.

Find the arc B intersected by the parabola X created from
the sweep line and site x. (see diagram above)

Insert new parabola into T and split the parabola (B) that
it intersects into two pieces. Rebalance T if necessary.
Update @ by deleting the circle event that is no longer pos-
sible based on the slice through the wavefront (A-B-C), and

by inserting the three newly possible circle events created
by the new site event (A-B1-X, B1-X-B2, X-B2-C).

(c) If ¢ is a circle event (x: ABtDE — ABDE):

i.
ii.

iii.

Record the voronoi vertex.
Delete the arc that disappeared from T

Update @ by deleting the three now impossible circle events
(A-B-z, B-z-D, z-D-FE) and inserting the two newly possi-
ble circle events A-B-D, B-D-E).

5.4 Conclusion

It is interesting to note that the problem of sorting n numbers can be reduced
to the problem of constructing voronoi diagrams. This means that depite our
efforts to find a voronoi diagram algorithm more efficient than the two described
above (each of which run in O(nlogn) time), there is no such algorithm to be

found.

12



