
Java history 

•  invented mainly by James Gosling ([formerly] Sun Microsystems) 

•  1990: Oak language for embedded systems 
–  needs to be reliable, easy to change, retarget 
–  efficiency is secondary 
–  implemented as interpreter, with virtual machine 

•  1993: renamed "Java"; use in a browser instead of a microwave  
–  Java Virtual Machine (JVM) runs in browser 

•  1994: Netscape supports Java in their browser 
–  enormous hype: a viable threat to Microsoft 

•  1997-2002: Sun sues Microsoft multiple times over Java 
–  MSFT found guilty of anti-competitive actions; mostly settled by 4/04 

•  significant language changes in Java 1.5 (9/04) 
–  generics, auto box/unbox, for loop, annotations, ... 
–  Java 1.6 (== 6.0) 12/06 is mostly incremental changes 
–  Java 1.7 (7/11) seems to be as well 



Java vs. C and C++ 
•  no preprocessor 

–  import instead of  #include 
–  constants use static final declaration 

•  C-like basic types, operators, expressions 
–  sizes, order of evaluation are specified 

•  object-oriented 
–  everything is part of some class 
–  objects all derived from Object class 
–  klunky mechanisms for converting basic <-> object 

•  references instead of pointers for objects 
–  null references, garbage collection,  no destructors 
–  == is object identity, not content identity 

•  all arrays are dynamically allocated 
int[] a;    // a is now null     
a = new int[100]; 

•  strings are more or less built in 
•  C-like control flow, but 

–  labeled break and continue instead of goto 
–  exceptions: try {…} catch(Exception) {…} 

•  threads for parallelism within a single process 



Basic data types 

•  Java tries to specify some of the unspecified or undefined 
parts of C and C++ 

•  basic types:  
–  boolean  true / false (no conversion to/from int) 
–  byte  8 bit signed 
–  char  16 bit unsigned (Unicode character) 
–  int  32 bit signed 
–  short, long, float, double 

•  String is sort of built-in (an Object) 
–  "..." is a String 
–  holds 16-bit Unicode chars, NOT bytes 
–  does NOT have a null terminator; String.length() returns length 
–  + is string concatenation operator; += appends 
–  immutable: string operations make new strings 



Classes & objects in Java 

•  everything is part of some object 
–  all classes are derived from class Object 

•  member functions & variables defined inside class 
–  internal functions should not be public, variables should never be public 

•  every object is an instance of some class 
–  created dynamically by calling new 

•  class variable: a variable declared static in class 
–  only one instance in whole program, exists even if class is never instantiated 
–  the closest thing to a global variable in Java 

  public class RE { 
     static int num_REs = 0; 
     public RE(String re) { 
        num_REs++; 
        ... 
     } 
     public static int RE_count() { 
        return num_REs; 
     } 



Class methods 
•  most methods associated with an object instance 
•  if declared static, amounts to a global function 

class RE { 
 String re; 
 public boolean equals(RE r) { 
   return re.equals(r.re); 
 } 
 public static boolean equals(RE r1, RE r2) { 
   return r1.re.equals(r2.re); 
 } 
 public static void main(String[] args) { 
   RE r1 = new RE(args[0]); 
   RE r2 = new RE(args[1]); 
   if (r1.equals(r2)) ...    // member function 
   if (equals(r1, r2)) ...   // static function 
   if (r1 == r2) ...         // object equality 
 } 

•  some classes are entirely static members and class functions, 
e.g., Math, System, Color 
–  can't make a new one: no constructor 



Scope and visibility 
•  only one public class per file 

–  public class hello {} has to be in file hello.java!
•  public methods of the class are visible outside the file 
•  other methods are not 

–  default is file private 
•  other classes in a file are visible within the file 
•  but not visible outside the file 

•  variables of a class are always visible within the class 
•  and to other classes in the same file unless private 

•  static variables are visible to all class instances 
class Math { 
   public static double PI = 3.141592654;  // etc. 
} 
double d = Math.cos(Math.PI); 



Destruction & garbage collection 
•  interpreter keeps track of what objects are currently in use 
•  memory can be released when last use is gone 

–  release does not usually happen right away 
–  has to be garbage-collected 

•  garbage collection happens automatically 
–  separate low-priority thread does garbage collection 

•  no control over when this happens 
–  can set object reference to null to encourage it 

•  no destructor (unlike C++) 
–  can define a finalize() method for a class to reclaim other resources, 
   close files, etc. 
–  no guarantee that a finalizer will ever be called 

•  garbage collection is a great idea 
–  but this does not seem like a great design 



I/O and file system access 
•  byte I/O for raw data 

–  read(), write(), InputStream, OutputStream 
•  character I/O for Unicode (Reader, Writer) 

–  InputReader and OutputWriter 
–  InputStreamReader, OutputStreamWriter 
–  BufferedReader, BufferedWriter 

•  byte-at-a-time I/O 
–  System.in, .out, .err like stdin, stdout, stderr 
–  read() returns next byte of input, -1 for end of file 
–  any error causes an I/O Exception 

import java.io.*; 

  public class cat1 { 
     public static void main(String args[]) throws IOException  
     { 
       int b; 
       while ((b = System.in.read()) != -1) 
         System.out.write(b); 
      } 
   } 



Buffered byte I/O to/from files 

•  buffering is usually required; too slow otherwise 

import java.io.*; 

public class cp2 { 
  public static void main(String[] args) throws IOException { 
    int b; 

    FileInputStream fin = new FileInputStream(args[0]); 
    FileOutputStream fout = new FileOutputStream(args[1]); 
    BufferedInputStream bin = new BufferedInputStream(fin); 
    BufferedOutputStream bout = new BufferedOutputStream(fout); 

    while ((b = bin.read()) > -1) 
      bout.write(b); 
    bin.close(); 
    bout.close(); 
  } 
} 



Character I/O (char instead of byte) 
•  use a different set of functions for char I/O 
•  works properly with Unicode ('\u1234' literals) 
•  InputStreamReader adapts from bytes to chars 
•  OutputStreamWriter adapts from chars to bytes 
•  use Buffered(Reader|Writer) for speed 

public class cat3 { 
  public static void main(String[] args) throws IOException { 
    BufferedReader in =  
      new BufferedReader(new InputStreamReader(System.in)); 
    BufferedWriter out =  
      new BufferedWriter(new OutputStreamWriter(System.out)); 
    String s; 
    while ((s = in.readLine()) != null) { 
      out.write(s); 
      out.newLine(); 
    } 
    out.flush();   // required!! 
  } 
} 



Unicode   (www.unicode.org) 

•  universal character encoding scheme 
–  ~110,000 characters today 

•  UTF-16: 16 bit internal representation 
–  encodes all characters used in all languages 

numeric value, name, case, directionality, … 
–  expansion mechanism for > 216 characters 

•  UTF-8: byte-oriented external form 
–  variable-length encoding, self-synchronizing within a couple of bytes 
–  ASCII compatible: 7-bit characters occupy 1 byte 

   00000000 0bbbbbbb → 0bbbbbbb   
   00000bbb bbbbbbbb → 110bbbbb 10bbbbbb 
   bbbbbbbb bbbbbbbb → 1110bbbb 10bbbbbb 10bbbbbb 

–  analogous longer encoding for chars in extended set 
•  Java supports Unicode 

–  char data type is 16-bit Unicode 
–  String data type is 16-bit Unicode chars 
–  \uhhhh is Unicode character hhhh  (h == hex digit); use in "..." and '.' 



Exceptions 
•  C-style error handling 

–  ignore errors -- can't happen 
–  return a special value from functions, e.g., 

-1 from system calls like open(), NULL from library functions like fopen() 
•  leads to complex logic 

–  error handling mixed with computation 
–  repeated code or goto's to share code  

•  limited set of possible return values 
–  extra info via errno and strerr: global data 
–  some functions return all possible values 

so no possible error return value is available for use 
•  exceptions are the Java solution (also in C++) 
•  an exception indicates unusual condition or error 
•  occurs when program executes a throw statement 
•  control unconditionally transferred to catch block 
•  if no catch in current function, passes to calling method 
•  keeps passing up until caught 

–  ultimately caught by system at top level 



try {…} catch {…} 
•  a method can catch exceptions 

public void foo() { 
  try { 
       // if anything here throws an IO exception 
  // or a subclass, like FileNotFoundException 
  } catch (IOException e) { 
      // this code will be executed to deal with it 
  } finally { 
      // this is done regardless 
  } 

•  or it can throw them, to be handled by caller 
•  a method must list exceptions it can throw 

–  exceptions can be thrown implicitly or explicitly 

public void foo() throws IOException { 
   // if anything here throws any kind of IO exception 
   // foo will throw an exception, to be handled by its caller 
} 



With exceptions 
public class cp2 { 

  public static void main(String[] args) { 
    int b; 

    try { 
      FileInputStream fin = new FileInputStream(args[0]); 
      FileOutputStream fout = new FileOutputStream(args[1]); 
      BufferedInputStream bin = new BufferedInputStream(fin); 
      BufferedOutputStream bout = new BufferedOutputStream(fout); 

      while ((b = bin.read()) > -1) 
        bout.write(b); 
      bin.close(); 
      bout.close(); 
    } catch (IOException e) {                  
      System.err.println("IOException " + e); 
    } 
  } 
} 



Why exceptions? 
•  reduced complexity 

–  if a method returns normally, it worked 
–  each statement in a try block knows that previous statements worked, 

without explicit tests 
–  if the try exits normally, all the code in it worked 
–  error code is grouped in a single place 

•  can't unconsciously ignore possibility of errors 
–  have to at least think about what exceptions can be thrown 

 public static void main(String args[]) throws IOException { 
    int b; 
    while ((b = System.in.read()) >= 0) 
       System.out.write(b); 
 } 

•  don't use exceptions for normal flow of control 
•  don't use for "normal" unusual conditions 

–  e.g., in.read() returns –1 for EOF instead of throwing an exception 

–  should a file open that fails throw an exception? 


