
Django
•  by Adrian Holovaty and Jacob Kaplan-Moss (released July 2005)

•  a collection of Python scripts to

•  create a new project / site
–  generates Python scripts for settings, etc.
–  configuration info stored as Python lists

•  creat a new application within a project
–  generates scaffolding/framework for models, views

•  run a development web server for local testing

•  generate a database or build interface to an existing database
•  provide a command-line interface to application
•  create an administrative interface for the database
•  ...

Django Reinhart, 1910-1953

Conventional approach to building a web site
•  user interface, logic, database access are all mixed together

import MySQLdb
print "Content-Type: text/html"
print
print "<html><head><title>Books</title></head>"
print "<body>"
print "<h1>Books</h1>"
print ""
connection = MySQLdb.connect(user='me', passwd='x', db='my_db')
cursor = connection.cursor()
cursor.execute("SELECT name FROM books ORDER BY pub_date DESC")
for row in cursor.fetchall():
 print "%s" % row[0]
print ""
print "</body></html>"
connection.close()

Model-View-Controller (MVC) pattern
•  an example of a design pattern
•  model: the structure of the data

–  how data is defined and accessed
•  view: the user interface

–  what it looks like on the screen
–  can have multiple views for one model

•  controller: how information is moved around
–  processing events, gathering and processing data,
 generating HTML, ...

•  separate model from view from processing so that when one
changes, the others need not

•  used with varying fidelity in
–  Django, App Engine, Ruby on Rails, XCode Interface Builder, ...

•  not always clear where to draw the lines
–  but trying to separate concerns is good

Django web framework

•  write client code in HTML, CSS, Javascript, ...
–  Django template language helps
 separate form from content

•  write server code in Python
–  some of this is generated for you

•  write database access with Python library calls
–  they are translated to SQL database commands

•  URLs on web page map mechanically to Python function calls
–  regular expressions specify classes of URLs
–  URL received by server is matched against regular expressions
–  if a match is found, that identifies function to be called
 and arguments to be provided to the function

djangobook.com

Django automatically-generated files

•  generate framework/skeleton of code by program

•  three basic files:

 models.py: database tables, etc.

 views.py: business logic, formatting of output

 urls.py: linkage between web requests and view functions

•  plus others for special purposes:

 settings.py: db type, names of modules, ...

 tests.py: test files

 templates: for generating and filling HTML info

Database linkage
DATABASES = {!
 'default': {!
 'ENGINE': 'django.db.backends.sqlite3', !
 'NAME': '/Users/bwk/dj1/mysite/sql3.db', ... !

from django.db import models!
class Books(models.Model):!
 isbn = models.CharField(max_length=15)!
 title = models.CharField(max_length=35)!
 author = models.CharField(max_length=35)!
 price = models.FloatField()!

BEGIN;!
CREATE TABLE "db1_books" (!
 "id" integer NOT NULL PRIMARY KEY,!
 "isbn" varchar(15) NOT NULL,!
 "title" varchar(35) NOT NULL,!
 "author" varchar(35) NOT NULL,!
 "price" real NOT NULL!
);!

in settings.py

in models.py

generated by Django

URL patterns
•  regular expressions used to recognize parameters and pass them

to Python functions
•  provides linkage between web page and what functions are called

for semantic actions

 urlpatterns = patterns('',
 (r'^time/$', current_datetime),
 (r'^time/plus/(\d{1,2})/$', hours_ahead),
)

•  a reference to web page …/time/ calls the function
 current_datetime()
•  tagged regular expressions for parameters: url …/time/plus/12
 calls the function
 hours_ahead(12)

Templates for generating HTML

•  try to separate page design from code that generates it
•  Django has a specialized language for including HTML within code

–  loosely analogous to PHP mechanism

 # latest_books.html (the template)

 <html><head><title>Books</title></head>
 <body>
 <h1>Books</h1>

 {% for book in book_list %}
 {{ book.name }}
 {% endfor %}

 </body></html>

Administrative interface
•  most systems need a way to modify the database even if initially

created from bulk data
–  add / remove users, set passwords, ...
–  add / remove records
–  fix contents of records
–  ...

•  often requires special code

•  Django generates an administrative interface automatically
–  loosely equivalent to MyPhpAdmin

 urlpatterns = patterns('',
 ...
 # Uncomment this for admin:
 # (r'^admin/', include('django.contrib.admin.urls')),

Google Web Toolkit (GWT) (first available May 2006)

•  write client (browser) code in Java
–  widgets, events, layout loosely similar to Swing

•  test client code on server side
–  test browser, or plugin for testing with real browser on local system

•  compile Java to Javascript and HTML/CSS
–  [once it works]

•  use generated code as part of a web page
–  generated code is browser independent (diff versions for diff browsers)

•  can use development environments like Eclipse
–  can use JUnit for testing

•  strong type checking on source
–  detect typos, etc., at compile time (unlike Javascript)

•  doesn't handle all Java runtime libraries
–  ?

•  no explicit support for database access on server
–  use whatever package is available

Unphonebook in GWT

GWT example (client side, excerpt 1)
 public void onModuleLoad() {	
 final TextBox nameField = new TextBox();	
 final Label outputArea = new Label(); // was TextArea	

 RootPanel.get("nameFieldContainer").add(nameField);	
 RootPanel.get("outputAreaContainer").add(outputArea);	
 nameField.setFocus(true);	

 final Label textToServerLabel = new Label();	
 final HTML serverResponseLabel = new HTML();	

 // Create a handler for the sendButton and nameField	
 class MyHandler implements KeyUpHandler {	

 public void onKeyUp(KeyUpEvent event) {	
 if (nameField.getText().length() > 1) {	
 sendNameToServer(); 	
 } 	
 }

GWT example (client side, excerpt 2)
 private void sendNameToServer() {	
 String textToServer = nameField.getText();	
 textToServerLabel.setText(textToServer); 	
 serverResponseLabel.setText("");	
 greetingService.greetServer(textToServer,	
 new AsyncCallback<String>() {	
 public void onFailure(Throwable caught) {	
 } 	
 public void onSuccess(String result) {	
 outputArea.setText(result);	
 }	
 });	
 }	
 }	

 // Add a handler to send the name to the server	
 MyHandler handler = new MyHandler();	
 nameField.addKeyUpHandler(handler);	

GWT example (client side, excerpt 3)
 <h1 align="left">GWT Unphonebook</h1>	

 <table >	
 <tr>	
 <td id="nameFieldContainer"></td>	
 </tr>	
 <tr>	
 <td colspan="2" style="color:red;" 	
 id="errorLabelContainer"></td>	
 </tr>	
 </table>	
 <pre id="outputAreaContainer"	
 style="backgroundColor:#FFFF00; fontWeight:bold;"></pre>

GWT example (server side)
public class GreetingServiceImpl extends RemoteServiceServlet 	
 implements GreetingService {	
 public String greetServer(String input) 	
 throws IllegalArgumentException {	
 String result = "";	
 Runtime rt = Runtime.getRuntime();	
 Process p;	
 try {	
 input = escapeHtml(input);	
 p = rt.exec("grep -i " + input + " phone.txt");	
 BufferedReader pin = new BufferedReader(
 new InputStreamReader(p.getInputStream()));	
 String s;	
 while ((s = pin.readLine()) != null)	
 result += ”\n" + s;	
 pin.close();	
 } catch (IOException e) { result = "exec error”; }	
 return result;	
}	

GWT Widgets

Browser independence, almost

•  Firefox

•  Chrome

"Same Origin Policy"
•  "The same origin policy prevents a document or script loaded

from one origin from getting or setting properties of a document
from another origin. This policy dates all the way back to
Netscape Navigator 2.0." (Mozilla)

•  "The SOP states that JavaScript code running on a web page
may not interact with any resource not originating from the
same web site." (Google)

•  basically Javascript can only reference information from the
site that provided the original code

•  BUT: if a page loads Javascript from more than one site (e.g.,
as with cookies from third-party sites), then that JS code can
interact with that third-party site

GWT assessment
•  problem: Javascript is irregular, unsafe, not portable, easily

abused

•  solution: use Java, which is type-safe, standard, portable
• 
•  translate Java to Javascript to either be browser independent
 or tailored to specific browser as appropriate
•  can take advantage of browser quirks, make compact code,
 discourage reverse engineering
•  can provide standardized mechanisms for widgets, events,
 DOM access, server access, AJAX, RE's and other libraries,
 ...

•  in effect, treat each browser as a somewhat irregular machine
and compile optimized code for it specifically

GWT vs Django
•  focusing on different parts of the overall problem

•  GWT provides
–  reliable, efficient, browser-independent Javascript (from Java)
–  extensive widget set
–  no help with database access, generating HTML, …

•  Django provides
–  no Javascript help
–  no widgets
–  easy database access; template language for generating HTML, …
–  easy linkage from URLs on web page to Python functions

•  is GWT + App Engine a good combination?

Assessment of Web Frameworks
•  advantages

–  takes care of repetitive parts
more efficient in programmer time

–  automatically generated code is likely to be more reliable, have more
uniformity of structure

–  "DRY" (don't repeat yourself) is encouraged
–  "single point of truth"

information is in only one place so it's easier to change things
–  ...

•  potential negatives
–  automatically generated code

can be hard to figure out what's going on
can be hard to change if you don't want to do it their way

–  systems are large and can be slow
–  ...

•  read Joel Spolsky's "Why I hate frameworks"
 http://discuss.joelonsoftware.com/default.asp?joel.3.219431.12

Assessment of Ajax-based systems
•  potential advantages

–  can be much more responsive (cf Google maps)
–  can off-load work from server to client
–  code on server is not exposed
–  continuous update of services

•  potential negatives
–  browsers are not standardized
–  Javascript code is exposed to client
–  Javascript code can be bulky and slow
–  asynchronous code can be tricky
–  DOM is very awkward
–  browser history not maintained without effort

•  what next? (changing fast)
–  more and better libraries
–  better tools and languages for programming
–  better standardization?
–  will the browser ever replace the OS?

