Django

by Adrian Holovaty and Jacob Kaplan-Moss (released July 2005)
a collection of Python scripts to

create a new project / site
- generates Python scripts for settings, etc.
- configuration info stored as Python lists . ‘

creat a new application within a project Django Reinhart, 1910-1953
- generates scaffolding/framework for models, views

run a development web server for local testing

generate a database or build interface to an existing database
provide a command-line interface to application
create an administrative interface for the database

Conventional approach to building a web site

- user interface, logic, database access are all mixed together

import MySQLdb

print "Content-Type: text/html"

print

print "<html><head><title>Books</title></head>"

print "<body>"

print "<hl>Books</hl1l>"

print ""

connection = MySQLdb.connect (user="me', passwd='x', ='my db')

cursor = connection.cursor ()
cursor.execute ("SELECT name FROM books ORDER BY pub date DESC")
for row in cursor.fetchall():
print "<1i>%s</1i>" % row[O0]
print ""
print "</body></html>"
connection.close ()

Model-View-Controller (MVC) pattern

an example of a design pattern
model: the structure of the data
- how data is defined and accessed
view: the user interface

- what it looks like on the screen
- can have multiple views for one model

controller: how information is moved around
- processing events, gathering and processing data,
generating HTML, ...

separate model from view from processing so that when one
changes, the others need not

used with varying fidelity in
- Django, App Engine, Ruby on Rails, XCode Interface Builder, ...

not always clear where to draw the lines
- but trying to separate concerns is good

E P

. 1
o “ S
g Sl
. <

Django web framework s I
django
+ write client code in HTML, CSS, Javascript, ... |E——
- Django template language helps
separate form from content o oy
- write server code in Python -
- some of this is generated for you djangobook.com

write database access with Python library calls
- they are translated to SQL database commands

URLs on web page map mechanically to Python function calls
- reqgular expressions specify classes of URLs
- URL received by server is matched against regular expressions
- if a match is found, that identifies function to be called
and arguments to be provided to the function

Django automatically-generated files

generate framework/skeleton of code by program
three basic files:

models.py: database tables, etc.

views.py: business logic, formatting of output

urls.py: linkage between web requests and view functions
plus others for special purposes:

settings.py: db type, names of modules, ...

tests.py: test files

templates: for generating and filling HTML info

Database linkage

DATABASES = { I
In settings.
'default': { J5-PY
"ENGINE': 'django.db.backends.sqlite3’,

'"NAME': '/Users/bwk/djl/mysite/sql3.db', ...

from django.db import models
class Books (models.Model):

isbn = models.CharField(max_length=15)
title = models.CharField(max_length=35)
author = models.CharField(max_length=35)

price = models.FloatField()

BEGIN;
CREATE TABLE "dbl_books" (
"id" integer NOT NULL PRIMARY KEY,
"isbn" varchar(15) NOT NULL,
"title" varchar(35) NOT NULL,
"author" varchar(35) NOT NULL,
"price"” real NOT NULL

in models.py

generated by Django

URL patterns

regular expressions used to recognize parameters and pass them
to Python functions

provides linkage between web page and what functions are called
for semantic actions

urlpatterns = patterns('',
(r'“time/$', current datetime),

(r'*time/plus/(\d{1,2})/$', hours ahead),
)

a reference to web page ../time/ calls the function

current datetime ()
tagged regular expressions for parameters: url ../time/plus/12
calls the function

hours ahead (12)

Templates for generating HTML

try to separate page design from code that generates it

Django has a specialized language for including HTML within code
- loosely analogous to PHP mechanism

latest books.html (the template)

<html><head><title>Books</title></head>
<body>
<hl>Books</hl>

% for book in book list %}

<1i>{{ book.name }}</1i>

% endfor %}

</body></html>

Administrative interface

most systems need a way to modify the database even if initially
created from bulk data

- add / remove users, set passwords, ...

- add / remove records

- fix contents of records

often requires special code

Django generates an administrative interface automatically
- loosely equivalent to MyPhpAdmin

urlpatterns = patterns('',

Uncomment this for admin:

(r'“~admin/', include('django.contrib.admin.urls')),

Google Web Toolkit (GWT) (first available May 2006)

write client (browser) code in Java

- widgets, events, layout loosely similar to Swing

test client code on server side

- test browser, or plugin for testing with real browser on local system
compile Java to Javascript and HTML/CSS

- [once it works]

use generated code as part of a web page

- generated code is browser independent (diff versions for diff browsers)
can use development environments like Eclipse

- can use JUnit for testing

strong type checking on source

- detect typos, etc., at compile time (unlike Javascript)
doesn't handle all Java runtime libraries

-2

no explicit support for database access on server
- use whatever package is available

Unphonebook in GWT

GWT Unphonebook

tilg

Dorothy M Tilghman (dorothyt) 609-258-1000 200 Elm Drive Public Safety
Shirley M Tilghman (smt) 609-258-6100 1 Nassau Hall Office of the President
(tilghman) 609-258-2900 124 Lewis Thomas Lab Office of the President

GWT example (client side, excerpt 1)

public void onModulelLoad() {
final TextBox nameField = new TextBox();
final Label outputArea = new Label(); // was TextArea

RootPanel.get("nameFieldContainer™).add(nameField);
RootPanel.get("outputAreaContainer").add(outputArea);
nameField.setFocus(true);

final Label textToServerLabel = new Label();
final HTML serverResponseLabel = new HTMLQ);

// Create a handler for the sendButton and nameField
class MyHandler implements KeyUpHandler {

public void onKeyUp(KeyUpEvent event) {
if (nameField.getText().length() > 1) {
sendNameToServer();

¥
¥

GWT example (client side, excerpt 2)

private void sendNameToServer() {
String textToServer = nameField.getText();
textToServerLabel.setText(textToServer);
serverResponselLabel.setText("");
greetingService.greetServer(textToServer,
new AsyncCallback<String>() {

public void onFailure(Throwable caught) {

}

public void onSuccess(String result) {

outputArea.setText(result);

}
P

¥

// Add a handler to send the name to the server
MyHandler handler = new MyHandler();
nameField.addKeyUpHandlerChandler);

GWT example (client side, excerpt 3)

<hl align="1left">GWNT Unphonebook</hl>

<table >
<tr>
<td i1d="nameFieldContainer"></td>
</tr>
<tr>
<td colspan="2" style="color:red;"
id="errorLabelContainer"></td>
</tr>
</table>
<pre 1id="outputAreaContainer"”
style="backgroundColor:#FFFF00; fontWeight:bold;"></pre>

GWT example (server side)

public class GreetingServiceImpl extends RemoteServiceServlet
implements GreetingService {
public String greetServer(String input)
throws IllegalArgumentException {

String result = "";

Runtime rt = Runtime.getRuntime();
Process p;

try {

input = escapeHtml(input);

p = rt.exec("grep -1 " + input + " phone.txt");

BufferedReader pin = new BufferedReader(

new InputStreamReader(p.getInputStream()));
String s;
while ((s = pin.readLine()) != null)
result += ”\n" + s;

pin.close();
} catch (IOException e) { result = "exec error”; }
return result;

GWT Widgets

GWT Homepage | More Examples

Google Web Toolkit @ [Canadian Engiish ,,
Showcase of Features

Example CSS Style Source Code
> Widgets

Rich Text
¥ Lists and Menus The Rich Text Area is supported on all major browsers, and will fall back gracefully to the level
e of functionality supported on each.
Suggest Box B (2 (UX x| |8 e= o= |= 3= =] |8 52| 62| | L,
Tree | Background *| | Foreground *| | Font $ | Size 2
Menu Bar Now is the time for all good men
Stack Panel to come to the aid of their party.
Stack Layout Panel
¥ Text Input
Basic Text

Rich Text

Browser independence, almost

Firefox
B 7 U X, ¥ E E E § 9= ¢=
| Background s | | Foreground + | | Font
Chrome

e

¥
il
*
il

B 7 U X, x*
|

IBackground ;| Foreground j |Font

"Same Origin Policy"

"The same origin policy prevents a document or script loaded
from one origin from getting or setting properties of a document
from another origin. This policy dates all the way back to
Netscape Navigator 2.0." (Mozilla)

"The SOP states that JavaScript code running on a web page
may not interact with any resource not originating from the
same web site." (Google)

basically Javascript can only reference information from the
site that provided the original code

BUT: if a page loads Javascript from more than one site (e.g.,
as with cookies from third-party sites), then that JS code can
inferact with that third-party site

GWT assessment

problem: Javascript is irregular, unsafe, not portable, easily
abused

solution: use Java, which is type-safe, standard, portable

translate Java to Javascript to either be browser independent
or tailored to specific browser as appropriate

can take advantage of browser quirks, make compact code,
discourage reverse engineering

can provide standardized mechanisms for widgets, events,
DOM access, server access, AJAX, RE's and other libraries,

in effect, treat each browser as a somewhat irregular machine
and compile optimized code for it specifically

GWT vs Django

focusing on different parts of the overall problem

GWT provides
- reliable, efficient, browser-independent Javascript (from Java)
- extensive widget set
- no help with database access, generating HTML, ...

Django provides
- no Javascript help
- no widgets
- easy database access; template language for generating HTML, ...
- easy linkage from URLs on web page to Python functions

is GWT + App Engine a good combination?

Assessment of Web Frameworks

- advantages

takes care of repetitive parts
more efficient in programmer time

automatically generated code is likely to be more reliable, have more
uniformity of structure

"DRY" (don't repeat yourself) is encouraged

"single point of truth"
information is in only one place so it's easier to change things

- potential negatives

automatically generated code
can be hard to figure out what's going on
can be hard to change if you don't want to do it their way

- systems are large and can be slow

- read Joel Spolsky's "Why I hate frameworks"
http://discuss. joelonsoftware.com/default.asp?joel.3.219431.12

Assessment of Ajax-based systems

potential advantages
- can be much more responsive (cf Google maps)
- can off-load work from server to client
- code on server is not exposed
- continuous update of services
potential negatives
- browsers are not standardized
- Javascript code is exposed to client
- Javascript code can be bulky and slow
- asynchronous code can be tricky
- DOM is very awkward
- browser history not maintained without effort
what next? (changing fast)
- more and better libraries
- better tools and languages for programming
- better standardization?
- will the browser ever replace the OS?

