Scripting languages

- originally tools for quick hacks, rapid prototyping,
gluing together other programs, ...
- evolved into mainstream programming tools
- characteristics
- text strings as basic (or only) data type
- reqgular expressions (maybe) built in
- associative arrays as a basic aggregate type
- minimal use of types, declarations, eftc.
- usually interpreted instead of compiled

- examples
- shell
- Awk
- Perl, PHP, Ruby, Python
- Tel, Lua, ...
- Javascript, Actionscript
- Visual Basic, (VB|W|C)Script, PowerShell

Shells and shell programming

- shell: a program that helps run other programs
- intermediary between user and operating system
- basic scripting language
- programming with programs as building blocks
* an ordinary program, not part of the system
- it can be replaced by one you like better
- therefore there are lots of shells, reflecting history and preferences

- popular shells:

- sh Bourne shell (Steve Bourne, Bell Labs -> ... -> El Dorado Ventures)
emphasizes running programs and programmability
syntax derived from Algol 68
csh Cshell (Bill Joy, UC Berkeley -> Sun -> Kleiner Perkins)
interaction: history, job control, command & filename completion, aliases
more C-like syntax, but not as good for programming (at least historically)
ksh Korn shell (Dave Korn, Bell Labs -> AT&T Labs)
combines programmability and interaction
syntactically, superset of Bourne sh
provides all csh interactive features + lots more
bash GNU shell
mostly ksh + much of csh

- tcsh
evolution of csh

Features common to Unix shells

- command execution
+ built-in commands, e.g., cd
+ filename expansion
*?2 [...]
* quoting
rm >’ Careful Il
echo "It's now " date™"
- variables, environment
PATH=/bin:/usr/bin in ksh & bash
setenv PATH /bin:/usr/bin in (1)csh
- input/output redirection, pipes
prog <in >out, prog >>out
who | wc
slow.1 | slow.2 & asynchronous operation
- executing commands from a file
arguments can be passed to a shell file ($0, $1, etc.)
if made executable, indistinguishable from compiled programs

provided by the shell, not each program

Shell programming

- the shell is a programming language
- the earliest scripting language

- string-valued variables
- limited regexprs mostly for filename expansion

- control flow
- if-else
if cmd; then cmds; elif cmds; else cmds; fi (sh...)
if (expr) cmds; else if (expr) cmds; else cmds; endif (csh)
- while, for
for var in list; do commands; done (sh, ksh, bash)
foreach var (list) commands; end (csh, tcsh)

- switch, case, break, continue, ...
* operators are programs
- programs return status: O == success, non-0 == various failures

* shell programming out of favor
- graphical interfaces
- scripting languages
e.g., system administration

setting paths, filenames, parameters, etc
now often in Perl, Python, PHP, ...

Shell programming

- shell programs are good for personal tools
- tailoring environment

- abbreviating common operations
(aliases do the same)

gluing together existing programs into new ones
prototyping

sometimes for production use

- e.g., configuration scripts

- But:
- shell is poor at arithmetic, editing
- macro processing is a mess
- quoting is a mess
- sometimes too slow
- can't get at some things that are really necessary

this leads to scripting languages

Over-simplified history of programming languages

- 1940's machine language

- 1950's assembly language

- 1960's high-level languages: Algol, Fortran, Cobol, Basic
- 1970's systems programming: C
- 1980's object-oriented: C++

- 1990's strongly-hyped: Java
- 2000's copycat languages: C#
+ 2010's ???

AWK

- a language for pattern scanning and processing
- Al Aho, Brian Kernighan, Peter Weinberger, at Bell Labs, ~1977

- intfended for simple data processing:

- selection, validation:

"Print all lines longer than 80 characters"
length > 80

* transforming, rearranging:

“Print first two fields in the opposite order"
{ print $2, $1 }

* report generation:
"Add up the numbers in the first field,
then print the sum and average"
{ sum += S$1 }
END { print sum, sum/NR }

Structure of an AWK program:

- a sequence of pattern-action statements

pattern { action }
pattern { action }

- "pattern” is a regular expression, numeric expression, string expression
or combination of these
- "action" is executable code, similar to C

* usage:
awk 'program' [filel file2 ...]
awk -f progfile [filel file2 ...]
- operation:

for each file
for each input line
for each pattern
if pattern matches input line
do the action

AWK features:

- input is read automatically across multiple files
- lines are split into fields ($1, ..., $NF: $0 for whole line)
- variables contain string or numeric values (or both)
- no declarations: type determined by context and use
- initialized to O and empty string
- built-in variables for frequently-used values
- operators work on strings or numbers
- coerce type / value according to context
- associative arrays (arbitrary subscripts)
- regular expressions (like egrep)
- control flow statements similar to C: if-else, while, for, do
* built-in and user-defined functions
- arithmetic, string, regular expression, text edit, ...
- printf for formatted output
- getline for input from files or processes

Basic AWK programs, part 1

{ print NR, $0 } precede each line by line number
{ $1 = NR; print } replace first field by line number
{ print $2, $1 } print field 2, then field 1

{ temp = $1; $1 = $2; $2 = temp; print } flip $1, $2
{ $2 = ""; print } zap field 2

{ print $NF } print last field

NF > 0 print non-empty lines

NF > 4 print if more than 4 fields

SNF > 4 print if last field greater than 4
/regexpr/ print matching lines (egrep)

$1 ~ /regexpr/ print lines where first field matches

Basic AWK programs, part 2
NF > 0 {print $1, $2} print two fields of non-empty lines
END { print NR } line count

{ nc += length($0) + 1; nw += NF } wc command

END { print NR, "lines", nw, "words", nc, "characters" }

length($0) > max { max = length($0); line = $0 }
END { print max, line } print longest line

Control flow

- if-else, while, for, do...while, break, continue
- as in C, but no switch

- for (i in array)
- go through each subscript of an associative array

* next start next iteration of main loop
- exit leave main loop, go to END block

{ sum = 0
for (i = 1; i <= NF; i++)
sum += $i
print sum

}

{ for (1 = 1; i <= NF; 1i++)
sum += $i
}

END { print sum }

Awk text formatter

#!'/bin/sh
£ - format text into 60-char lines

awk '

/./ { for (i = 1; i <= NF; i++)
addword ($i) }

/*$/ { printline(); print "" }

END { printline() }

function addword(w) {
if (length(line) + length(w) > 60)
printline ()
line = line space w
space = " "

}

function printline() {
if (length(line) > 0)
print line
line = space = ""
}
' H$@H

Arrays

- common case: array subscripts are integers

- reverse a file:

{ x[NR] = $0 } # put each line into array x
END { for (i = NR; i > 0; 1i--)
print x[i] }

- make an array:
n = split(string, array, separator)
- splits "string" into array[1] ... array[n]

- returns number of elements
- optional "separator" can be any regular expression

Associative Arrays

- array subscripts can have any value, not just integers
- canonical example: adding up name-value pairs

- input:
pizza 200
beer 100
pizza 500
beer 50
* output:
pizza 700
beer 150
* program:

{ amount[$1l] += $2 }
END { for (name in amount)
print name, amount[name] | "sort +1 -nr"

Anatomy of a compiler

input l

lexical analysis

N

tokens l \

syntax analysis symbol table

infermediate form

7

code generation

Anatomy of an interpreter

input l
lexical analysis
tokens l
syntax analysis »| symbol table
//
7’
intermediate form e
.’ < g
. . 7
input | execution > output
data

!

YACC and LEX

- languages/tools for building [parts of] compilers and interpreters

- YACC: '"yet another compiler compiler" (S. €. Johnson, ~ 1972)
- converts a grammar and semantic actions into a parser for that grammar

« LEX: lexical analyzer generator (M. E. Lesk, ~ 1974)

- converts regular expressions for tokens info a lexical analyzer that
recoghizes those tokens

- parser calls lexer each time it needs another input token
- lexer returns a token and its lexical type

- when to think of using them:

- real grammatical structures (e.g., recursively defined)
- complicated lexical structures

- rapid development time is important

- language desigh might change

YACC overview

YACC converts grammar rules & semantic actions into parsing fcn yyparse()

- yyparse parses programs written in that grammar, performs semantic actions as
grammatical constructs are recognized

- semantic actions usually build a parse tree

- each node represents a particular syntactic type, children are components
- code generator walks the tree to generate code

- may rewrite tree as part of optimization
- an interpreter could

- run directly from the program (TCL, shells)

- interpret directly from the tree (AWK, Perl?):
at each node, interpret children (recursion), do operation of node itself, return result

- generate byte code output to run elsewhere (Java)
- generate byte code (Python, ...)
- generate C to be compiled later
- compiled code runs faster
- but compilation takes longer, needs object files, less portable, ...
- interpreters start faster, but run slower
- for 1- or 2-line programs, interpreter is better
- on the fly / just in time compilers merge these (e.g., C# .NET, some Java)

Grammar specified in YACC

- grammar rules give syntax

- the action part of a rule gives semantics
- usually used to build a parse tree

statement :
IF (expression) statement
create node(IF, expr, stmt, O)
IF (expression) statement ELSE statement
create node(IF, expr, stmtl, stmt2)
WHILE (expression) statement

create node(WHILE, expr, stmt)
variable = expression

create node(ASSIGN, var, expr)

expression :
expression + expression
expression - expression

* YACC creates a parser from this

- when the parser runs, it creates a parse tree
- a compiler walks the tree to generate code

- an interpreter walks the tree to execute it

Excerpts from a real grammar

term:

| term '+' term { $$ = op2(ADD, $1, $3); }

| term '-' term { $$ = op2 (MINUS, $1, $3); }

| term '*' term { $$ = op2 (MULT, $1, $3); }

| term '/' term { $$ = op2 (DIVIDE, $1, $3); }

| term '$' term { $$ = op2(MOD, $1, $3); }

| '-' term %$prec UMINUS { $$ = opl (UMINUS, $2); }

| INCR var { $$ = opl (PREINCR, $2); }

| var INCR { $$ = opl (POSTINCR, $1); }
stmt:

| while {inloop++;} stmt {--inloop; $$ = stat2 (WHILE,S$1,$3);}
| if stmt else stmt { $$ = stat3(IF, $1, $2, $4); }

| if stmt { $$ = stat3(IF, $1, $2, NIL); }
I

lbrace stmtlist rbrace { $$ = $2; }

while:
WHILE ' (' pattern rparen { $$ = notnull($3); }

Excerpts from a LEX analyzer

LR { yylval.i = INCR; RET(INCR); }
m__n { yylval.i = DECR; RET (DECR); }

([0-9]+(\.?) [0-9]1*|\.[0-9]+) ([eE] (\+]|-)?[0-9]+)? {
yylval.cp = setsymtab (yytext, tostring(yytext),
atof (yytext), CON|NUM, symtab) ;

RET (NUMBER) ; }

while { RET (WHILE), }
for { RET (FOR) ; }
do { RET (DO); }

if { RET(IF); }
else { RET (ELSE); }
return { if ('infunc)

ERROR "return not in function" SYNTAX;
RET (RETURN) ;

. { RET (yylval.i = yytext[0]); /* everything else */ }

The whole process

l grammar l lexical rules

YACC Lex (or other) other C code

y.tab.c parsep\ / lex.yy.c GM

C compiler T

a.out

Using Awk for testing RE code

- regular expression tests are described in a very small specialized
language:

“a.$ ~ ax
aa

I~ xa

aaa

axy

- each test is converted into a command that exercises awk:
echo 'ax' | awk '!'/*a.$'/ { print "bad" }'

* illustrates
- little languages
- programs that write programs
- mechanization

Unit testing

- code that exercises/tests small area of functionality
- single method, function, ...

- helps make sure that code works and stays working
- make sure small local things work so can build larger things on top

- very often used in "the real world"
- e.g., can't check in code unless has tests and passes them

- often have tools to help write tests, run them automatically
- eg., JUnit

struct {

int yesno; char *re; char *text;
} tests[1l00] = {

1, "x", "x",

0/ "x"I "Y"/

o, 0, O
}s;
main() {

for (int i = 0; tests[i].re !'= 0; i++) {
if (match(tests[i].re, tests[i].text) != tests[i].yesno)
printf ("%d failed: %d [%s] [%s]\n", 1i,
tests[i] .yesno, tests[i].re, tests[i].text);

Lessons

- people use tools in unexpected, perverse ways
- compiler writing: implementing languages and other tools
- object language (programs generate Awk)
- first programming language
- existence of a language encourages programs to generate it
- machine generated inputs stress differently than people do
- mistakes are inevitable and hard to change
- concatenation syntax
- ambiguities, especially with >
- function syntax
- creeping featurism from user pressure
difficulty of changing a "standard”
* bugs last forever

"One thing [the language designer] should not do is to include
untried ideas of his own."
(C. A. R. Hoare, Hints on Programming Language Design, 197 3)

