
Scripting languages
•  originally tools for quick hacks, rapid prototyping,
 gluing together other programs, ...
•  evolved into mainstream programming tools
•  characteristics

–  text strings as basic (or only) data type
–  regular expressions (maybe) built in
–  associative arrays as a basic aggregate type
–  minimal use of types, declarations, etc.
–  usually interpreted instead of compiled

•  examples
–  shell
–  Awk
–  Perl, PHP, Ruby, Python
–  Tcl, Lua, ...
–  Javascript, Actionscript
–  Visual Basic, (VB|W|C)Script, PowerShell
–  …

Shells and shell programming
•  shell: a program that helps run other programs

–  intermediary between user and operating system
–  basic scripting language
–  programming with programs as building blocks

•  an ordinary program, not part of the system
–  it can be replaced by one you like better
–  therefore there are lots of shells, reflecting history and preferences

•  popular shells:
–  sh Bourne shell (Steve Bourne, Bell Labs -> ... -> El Dorado Ventures)

 emphasizes running programs and programmability
 syntax derived from Algol 68

–  csh C shell (Bill Joy, UC Berkeley -> Sun -> Kleiner Perkins)
 interaction: history, job control, command & filename completion, aliases
 more C-like syntax, but not as good for programming (at least historically)

–  ksh Korn shell (Dave Korn, Bell Labs -> AT&T Labs)
combines programmability and interaction
syntactically, superset of Bourne sh
provides all csh interactive features + lots more

–  bash GNU shell
mostly ksh + much of csh

–  tcsh
evolution of csh

Features common to Unix shells
•  command execution

 + built-in commands, e.g., cd
•  filename expansion

 * ? [...]
•  quoting

 rm '*' Careful !!!
 echo "It's now `date`"

•  variables, environment
 PATH=/bin:/usr/bin in ksh & bash
 setenv PATH /bin:/usr/bin in (t)csh

•  input/output redirection, pipes
 prog <in >out, prog >>out
 who | wc
 slow.1 | slow.2 & asynchronous operation

•  executing commands from a file
arguments can be passed to a shell file ($0, $1, etc.)
if made executable, indistinguishable from compiled programs

provided by the shell, not each program

Shell programming
•  the shell is a programming language

–  the earliest scripting language
•  string-valued variables
•  limited regexprs mostly for filename expansion

•  control flow
–  if-else

if cmd; then cmds; elif cmds; else cmds; fi (sh…)
if (expr) cmds; else if (expr) cmds; else cmds; endif (csh)

–  while, for
for var in list; do commands; done (sh, ksh, bash)
foreach var (list) commands; end (csh, tcsh)

–  switch, case, break, continue, ...
•  operators are programs

–  programs return status: 0 == success, non-0 == various failures
•  shell programming out of favor

–  graphical interfaces
–  scripting languages

e.g., system administration
setting paths, filenames, parameters, etc
now often in Perl, Python, PHP, ...

Shell programming
•  shell programs are good for personal tools

–  tailoring environment
–  abbreviating common operations

(aliases do the same)
•  gluing together existing programs into new ones
•  prototyping
•  sometimes for production use

–  e.g., configuration scripts

•  But:
–  shell is poor at arithmetic, editing
–  macro processing is a mess
–  quoting is a mess
–  sometimes too slow
–  can't get at some things that are really necessary

•  this leads to scripting languages

Over-simplified history of programming languages

•  1940's machine language

•  1950's assembly language

•  1960's high-level languages: Algol, Fortran, Cobol, Basic

•  1970's systems programming: C

•  1980's object-oriented: C++

•  1990's strongly-hyped: Java

•  2000's copycat languages: C#

•  2010's ???

AWK
•  a language for pattern scanning and processing

–  Al Aho, Brian Kernighan, Peter Weinberger, at Bell Labs, ~1977
•  intended for simple data processing:

•  selection, validation:
"Print all lines longer than 80 characters"

 length > 80

•  transforming, rearranging:
”Print first two fields in the opposite order"

 { print $2, $1 }

•  report generation:
"Add up the numbers in the first field,
then print the sum and average"

 { sum += $1 }
 END { print sum, sum/NR }

Structure of an AWK program:
•  a sequence of pattern-action statements

pattern { action }
pattern { action }
…

•  "pattern" is a regular expression, numeric expression, string expression
 or combination of these
•  "action" is executable code, similar to C

•  usage:
 awk 'program' [file1 file2 ...]
 awk -f progfile [file1 file2 ...]

•  operation:
 for each file

 for each input line
 for each pattern

 if pattern matches input line
do the action

AWK features:
•  input is read automatically across multiple files

–  lines are split into fields ($1, ..., $NF; $0 for whole line)
•  variables contain string or numeric values (or both)

–  no declarations: type determined by context and use
–  initialized to 0 and empty string
–  built-in variables for frequently-used values

•  operators work on strings or numbers
–  coerce type / value according to context

•  associative arrays (arbitrary subscripts)
•  regular expressions (like egrep)
•  control flow statements similar to C: if-else, while, for, do
•  built-in and user-defined functions

–  arithmetic, string, regular expression, text edit, ...
• printf for formatted output
• getline for input from files or processes

Basic AWK programs, part 1

{ print NR, $0 } precede each line by line number
{ $1 = NR; print } replace first field by line number
{ print $2, $1 } print field 2, then field 1
{ temp = $1; $1 = $2; $2 = temp; print } flip $1, $2
{ $2 = ""; print } zap field 2
{ print $NF } print last field

NF > 0 print non-empty lines
NF > 4 print if more than 4 fields
$NF > 4 print if last field greater than 4
/regexpr/ print matching lines (egrep)
$1 ~ /regexpr/ print lines where first field matches

Basic AWK programs, part 2

NF > 0 {print $1, $2} print two fields of non-empty lines

END { print NR } line count

 { nc += length($0) + 1; nw += NF } wc command
END { print NR, "lines", nw, "words", nc, "characters" }

length($0) > max { max = length($0); line = $0 }
END { print max, line } print longest line

Control flow
•  if-else, while, for, do...while, break, continue

–  as in C, but no switch

•  for (i in array)
–  go through each subscript of an associative array

•  next start next iteration of main loop
•  exit leave main loop, go to END block

{ sum = 0
 for (i = 1; i <= NF; i++)
 sum += $i
 print sum
}

{ for (i = 1; i <= NF; i++)
 sum += $i
}
END { print sum }

Awk text formatter
#!/bin/sh
f - format text into 60-char lines

awk '
/./ { for (i = 1; i <= NF; i++)
 addword($i) }
/^$/ { printline(); print "" }
END { printline() }

function addword(w) {
 if (length(line) + length(w) > 60)
 printline()
 line = line space w
 space = " "
}

function printline() {
 if (length(line) > 0)
 print line
 line = space = ""
}
' "$@"

Arrays
•  common case: array subscripts are integers

•  reverse a file:

 { x[NR] = $0 } # put each line into array x
 END { for (i = NR; i > 0; i--)
 print x[i] }

•  make an array:

 n = split(string, array, separator)

–  splits "string" into array[1] ... array[n]
–  returns number of elements
–  optional "separator" can be any regular expression

Associative Arrays
•  array subscripts can have any value, not just integers
•  canonical example: adding up name-value pairs

•  input:
pizza 200
beer 100
pizza 500
beer 50

•  output:
pizza 700
beer 150

•  program:

 { amount[$1] += $2 }
 END { for (name in amount)
 print name, amount[name] | "sort +1 -nr"
 }

Anatomy of a compiler

input

tokens

intermediate form

object file

lexical analysis

syntax analysis

code generation

symbol table

input
data a.out output

linking

Anatomy of an interpreter

input

tokens

intermediate form

input
data

lexical analysis

syntax analysis

execution

symbol table

output

YACC and LEX
•  languages/tools for building [parts of] compilers and interpreters

•  YACC: "yet another compiler compiler" (S. C. Johnson, ~ 1972)
–  converts a grammar and semantic actions into a parser for that grammar

•  LEX: lexical analyzer generator (M. E. Lesk, ~ 1974)
–  converts regular expressions for tokens into a lexical analyzer that

recognizes those tokens

•  parser calls lexer each time it needs another input token
•  lexer returns a token and its lexical type

•  when to think of using them:
–  real grammatical structures (e.g., recursively defined)
–  complicated lexical structures
–  rapid development time is important
–  language design might change

YACC overview
•  YACC converts grammar rules & semantic actions into parsing fcn yyparse()

–  yyparse parses programs written in that grammar, performs semantic actions as
grammatical constructs are recognized

•  semantic actions usually build a parse tree
–  each node represents a particular syntactic type, children are components

•  code generator walks the tree to generate code
–  may rewrite tree as part of optimization

•  an interpreter could
–  run directly from the program (TCL, shells)
–  interpret directly from the tree (AWK, Perl?):

at each node, interpret children (recursion), do operation of node itself, return result
–  generate byte code output to run elsewhere (Java)
–  generate byte code (Python, …)
–  generate C to be compiled later

•  compiled code runs faster
–  but compilation takes longer, needs object files, less portable, …

•  interpreters start faster, but run slower
–  for 1- or 2-line programs, interpreter is better
–  on the fly / just in time compilers merge these (e.g., C# .NET, some Java)

Grammar specified in YACC
•  grammar rules give syntax
•  the action part of a rule gives semantics

–  usually used to build a parse tree

statement :
IF (expression) statement

 create node(IF, expr, stmt, 0)
IF (expression) statement ELSE statement

 create node(IF, expr, stmt1, stmt2)
WHILE (expression) statement

 create node(WHILE, expr, stmt)
variable = expression

 create node(ASSIGN, var, expr)
…

expression :
expression + expression
expression - expression
...

•  YACC creates a parser from this
•  when the parser runs, it creates a parse tree
•  a compiler walks the tree to generate code
•  an interpreter walks the tree to execute it

Excerpts from a real grammar
 term:
 | term '+' term { $$ = op2(ADD, $1, $3); }
 | term '-' term { $$ = op2(MINUS, $1, $3); }
 | term '*' term { $$ = op2(MULT, $1, $3); }
 | term '/' term { $$ = op2(DIVIDE, $1, $3); }
 | term '%' term { $$ = op2(MOD, $1, $3); }
 | '-' term %prec UMINUS { $$ = op1(UMINUS, $2); }
 | INCR var { $$ = op1(PREINCR, $2); }
 | var INCR { $$ = op1(POSTINCR, $1); }

 stmt:
 | while {inloop++;} stmt {--inloop; $$ = stat2(WHILE,$1,$3);}
 | if stmt else stmt { $$ = stat3(IF, $1, $2, $4); }
 | if stmt { $$ = stat3(IF, $1, $2, NIL); }
 | lbrace stmtlist rbrace { $$ = $2; }

 while:
 WHILE '(' pattern rparen { $$ = notnull($3); }

Excerpts from a LEX analyzer
"++" { yylval.i = INCR; RET(INCR); }
"--" { yylval.i = DECR; RET(DECR); }

([0-9]+(\.?)[0-9]*|\.[0-9]+)([eE](\+|-)?[0-9]+)? {
 yylval.cp = setsymtab(yytext, tostring(yytext),
 atof(yytext), CON|NUM, symtab);
 RET(NUMBER); }

while { RET(WHILE); }
for { RET(FOR); }
do { RET(DO); }
if { RET(IF); }
else { RET(ELSE); }
return { if (!infunc)
 ERROR "return not in function" SYNTAX;
 RET(RETURN);
 }
• { RET(yylval.i = yytext[0]); /* everything else */ }

The whole process

YACC Lex (or other)

grammar lexical rules

other C code

C compiler

a.out

y.tab.c parser lex.yy.c analyzer

Using Awk for testing RE code
•  regular expression tests are described in a very small specialized

language:

^a.$ ~ ax
 aa
 !~ xa
 aaa
 axy

•  each test is converted into a command that exercises awk:
 echo 'ax' | awk '!/^a.$'/ { print "bad" }'

•  illustrates
–  little languages
–  programs that write programs
–  mechanization

Unit testing
•  code that exercises/tests small area of functionality

–  single method, function, ...
•  helps make sure that code works and stays working

–  make sure small local things work so can build larger things on top
•  very often used in "the real world"

–  e.g., can't check in code unless has tests and passes them
•  often have tools to help write tests, run them automatically

–  e.g., JUnit

struct {
 int yesno; char *re; char *text;
} tests[100] = {
 1, "x", "x",
 0, "x", "y",
 0, 0, 0
};
main() {
 for (int i = 0; tests[i].re != 0; i++) {
 if (match(tests[i].re, tests[i].text) != tests[i].yesno)
 printf("%d failed: %d [%s] [%s]\n", i,
 tests[i].yesno, tests[i].re, tests[i].text);
 }
}

Lessons
•  people use tools in unexpected, perverse ways

–  compiler writing: implementing languages and other tools
–  object language (programs generate Awk)
–  first programming language

•  existence of a language encourages programs to generate it
–  machine generated inputs stress differently than people do

•  mistakes are inevitable and hard to change
–  concatenation syntax
–  ambiguities, especially with >
–  function syntax
–  creeping featurism from user pressure
–  difficulty of changing a "standard”

•  bugs last forever

"One thing [the language designer] should not do is to include
untried ideas of his own."
(C. A. R. Hoare, Hints on Programming Language Design, 1973)

