
Scripting languages 
•  originally tools for quick hacks, rapid prototyping,  
       gluing together other programs, ... 
•  evolved into mainstream programming tools 
•  characteristics 

–  text strings as basic (or only) data type 
–  regular expressions (maybe) built in 
–  associative arrays as a basic aggregate type 
–  minimal use of types, declarations, etc. 
–  usually interpreted instead of compiled 

•  examples 
–  shell 
–  Awk 
–  Perl, PHP, Ruby, Python 
–  Tcl, Lua, ... 
–  Javascript, Actionscript 
–  Visual Basic, (VB|W|C)Script, PowerShell 
–  … 



Shells and shell programming 
•  shell: a program that helps run other programs 

–  intermediary between user and operating system 
–  basic scripting language 
–  programming with programs as building blocks 

•  an ordinary program, not part of the system 
–  it can be replaced by one you like better 
–  therefore there are lots of shells, reflecting history and preferences 

•  popular shells: 
–  sh   Bourne shell (Steve Bourne, Bell Labs -> ... -> El Dorado Ventures) 

 emphasizes running programs and programmability 
 syntax derived from Algol 68 

–  csh   C shell   (Bill Joy, UC Berkeley -> Sun -> Kleiner Perkins) 
 interaction: history, job control, command & filename completion, aliases 
 more C-like syntax, but not as good for programming (at least historically) 

–  ksh   Korn shell (Dave Korn, Bell Labs -> AT&T Labs) 
combines programmability and interaction 
syntactically, superset of Bourne sh 
provides all csh interactive features + lots more 

–  bash   GNU shell 
mostly ksh + much of csh 

–  tcsh   
evolution of csh 



Features common to Unix shells 
•  command execution 

 + built-in commands, e.g., cd 
•  filename expansion 

 *  ?  [...] 
•  quoting 

 rm '*'   Careful !!! 
 echo "It's now `date`" 

•  variables, environment 
 PATH=/bin:/usr/bin      in ksh & bash 
 setenv PATH /bin:/usr/bin     in (t)csh 

•  input/output redirection, pipes 
 prog <in >out,   prog >>out 
 who | wc 
 slow.1 | slow.2 &   asynchronous operation 

•  executing commands from a file 
arguments can be passed to a shell file ($0, $1, etc.) 
if made executable, indistinguishable from compiled programs 

provided by the shell, not each program 



Shell programming 
•  the shell is a programming language 

–  the earliest scripting language 
•  string-valued variables 
•  limited regexprs mostly for filename expansion 

•  control flow 
–  if-else 

if cmd; then cmds; elif cmds; else cmds; fi (sh…) 
if (expr) cmds; else if (expr) cmds; else cmds; endif (csh) 

–  while, for 
for var in list; do commands; done  (sh, ksh, bash) 
foreach var (list) commands; end   (csh, tcsh) 

–  switch, case, break, continue, ... 
•  operators are programs 

–  programs return status: 0 == success, non-0 == various failures 
•  shell programming out of favor 

–  graphical interfaces 
–  scripting languages 

e.g., system administration 
setting paths, filenames, parameters, etc 
now often in Perl, Python, PHP, ... 



Shell programming 
•  shell programs are good for personal tools 

–  tailoring environment 
–  abbreviating common operations 

(aliases do the same) 
•  gluing together existing programs into new ones 
•  prototyping 
•  sometimes for production use 

–  e.g., configuration scripts 

•  But: 
–  shell is poor at arithmetic, editing 
–  macro processing is a mess 
–  quoting is a mess 
–  sometimes too slow 
–  can't get at some things that are really necessary 

•  this leads to scripting languages 



Over-simplified history of programming languages 

•  1940's  machine language 

•  1950's  assembly language 

•  1960's  high-level languages:  Algol, Fortran, Cobol, Basic     

•  1970's  systems programming: C     

•  1980's  object-oriented: C++     

•  1990's  strongly-hyped: Java     

•  2000's  copycat languages: C#     

•  2010's  ??? 



AWK 
•  a language for pattern scanning and processing 

–  Al Aho, Brian Kernighan, Peter Weinberger, at Bell Labs, ~1977 
•  intended for simple data processing: 

•  selection, validation: 
"Print all lines longer than 80 characters" 

   length > 80 

•  transforming, rearranging: 
”Print first two fields in the opposite order" 

   { print $2, $1 } 

•  report generation: 
"Add up the numbers in the first field, 
then print the sum and average" 

             { sum += $1 } 
   END  { print sum, sum/NR } 



Structure of an AWK program: 
•  a sequence of pattern-action statements 

pattern  { action } 
pattern  { action } 
… 
   

•  "pattern" is a regular expression, numeric expression, string expression   
                 or combination of these 
•  "action" is executable code, similar to C 

•  usage: 
 awk 'program' [ file1 file2 ... ] 
 awk -f progfile [ file1 file2 ... ] 

•  operation: 
  for each file 

   for each input line 
    for each pattern 

  if pattern matches input line 
do the action 



AWK features: 
•  input is read automatically across multiple files 

–  lines are split into fields ($1, ..., $NF; $0 for whole line) 
•  variables contain string or numeric values (or both) 

–  no declarations: type determined by context and use 
–  initialized to 0 and empty string 
–  built-in variables for frequently-used values 

•  operators work on strings or numbers 
–  coerce type / value according to context 

•  associative arrays (arbitrary subscripts) 
•  regular expressions (like egrep) 
•  control flow statements similar to C: if-else, while, for, do 
•  built-in and user-defined functions 

–  arithmetic, string, regular expression, text edit, ... 
• printf for formatted output 
• getline for input from files or processes 



Basic AWK programs, part 1 

{ print NR, $0 }   precede each line by line number 
{ $1 = NR; print }  replace first field by line number 
{ print $2, $1 }   print field 2, then field 1 
{ temp = $1; $1 = $2; $2 = temp; print }   flip $1, $2 
{ $2 = ""; print }  zap field 2 
{ print $NF }   print last field 

NF > 0   print non-empty lines 
NF > 4   print if more than 4 fields 
$NF > 4   print if last field greater than 4 
/regexpr/   print matching lines (egrep) 
$1 ~ /regexpr/  print lines where first field matches 



Basic AWK programs, part 2 

NF > 0 {print $1, $2}  print two fields of non-empty lines 

END { print NR }         line count 

    { nc += length($0) + 1; nw += NF }    wc command 
END { print NR, "lines", nw, "words", nc, "characters" } 

length($0) > max { max = length($0); line = $0 } 
END      { print max, line }          print longest line 



Control flow 
•  if-else, while, for, do...while, break, continue 

–  as in C, but no switch 

•  for (i in array) 
–  go through each subscript of an associative array 

•  next  start next iteration of main loop 
•  exit   leave main loop, go to END block 

{ sum = 0 
  for (i = 1; i <= NF; i++) 
     sum += $i 
  print sum 
} 

{ for (i = 1; i <= NF; i++) 
     sum += $i  
} 
END { print sum } 



Awk text formatter 
#!/bin/sh 
# f - format text into 60-char lines 

awk ' 
/./  { for (i = 1; i <= NF; i++) 
           addword($i) } 
/^$/ { printline(); print "" } 
END  { printline() } 

function addword(w) { 
    if (length(line) + length(w) > 60) 
        printline() 
    line = line space w 
    space = " " 
} 

function printline() { 
    if (length(line) > 0) 
        print line 
    line = space = "" 
} 
' "$@" 



Arrays 
•  common case: array subscripts are integers 

•  reverse a file: 
       
         { x[NR] = $0 }   # put each line into array x 
    END  { for (i = NR; i > 0; i--) 
               print x[i] } 

•  make an array: 

 n = split(string, array, separator) 

–  splits "string" into array[1] ... array[n] 
–  returns number of elements 
–  optional "separator" can be any regular expression 



Associative Arrays 
•  array subscripts can have any value, not just integers 
•  canonical example: adding up name-value pairs 

•  input: 
pizza  200 
beer  100 
pizza  500 
beer  50 

•  output: 
pizza  700 
beer  150 

•  program: 

        { amount[$1] += $2 } 
    END { for (name in amount) 
            print name, amount[name] | "sort +1 -nr"  
    } 



Anatomy of a compiler 
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Anatomy of an interpreter 
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YACC and LEX 
•  languages/tools for building [parts of] compilers and interpreters  

•  YACC:  "yet another compiler compiler" (S. C. Johnson, ~ 1972) 
–  converts a grammar and semantic actions into a parser for that grammar 

•  LEX:  lexical analyzer generator  (M. E. Lesk, ~ 1974) 
–  converts regular expressions for tokens into a lexical analyzer that 

recognizes those tokens 

•  parser calls lexer each time it needs another input token 
•  lexer returns a token and its lexical type 

•  when to think of using them: 
–  real grammatical structures (e.g., recursively defined) 
–  complicated lexical structures 
–  rapid development time is important 
–  language design might change 



YACC overview 
•  YACC converts grammar rules & semantic actions into parsing fcn yyparse() 

–  yyparse parses programs written in that grammar, performs semantic actions as 
grammatical constructs are recognized 

•  semantic actions usually build a parse tree 
–  each node represents a particular syntactic type, children are components 

•  code generator walks the tree to generate code 
–  may rewrite tree as part of optimization 

•  an interpreter could 
–  run directly from the program (TCL, shells) 
–  interpret directly from the tree (AWK, Perl?): 

at each node, interpret children (recursion), do operation of node itself, return result 
–  generate byte code output to run elsewhere (Java) 
–  generate byte code (Python, …) 
–  generate C to be compiled later 

•  compiled code runs faster 
–  but compilation takes longer, needs object files, less portable, … 

•  interpreters start faster, but run slower 
–  for 1- or 2-line programs, interpreter is better  
–  on the fly / just in time compilers merge these (e.g., C# .NET, some Java) 



Grammar specified in YACC 
•  grammar rules give syntax 
•  the action part of a rule gives semantics 

–  usually used to build a parse tree 

statement :  
IF ( expression ) statement 

  create node(IF, expr, stmt, 0) 
IF ( expression ) statement ELSE statement 

  create node(IF, expr, stmt1, stmt2) 
WHILE (expression ) statement 

  create node(WHILE, expr, stmt) 
variable = expression 

  create node(ASSIGN, var, expr) 
… 

expression : 
expression + expression 
expression - expression 
... 

•  YACC creates a parser from this 
•  when the parser runs, it creates a parse tree 
•  a compiler walks the tree to generate code 
•  an interpreter walks the tree to execute it 



Excerpts from a real grammar 
  term: 
   | term '+' term          { $$ = op2(ADD, $1, $3); } 
   | term '-' term          { $$ = op2(MINUS, $1, $3); } 
   | term '*' term          { $$ = op2(MULT, $1, $3); } 
   | term '/' term          { $$ = op2(DIVIDE, $1, $3); } 
   | term '%' term          { $$ = op2(MOD, $1, $3); } 
   | '-' term %prec UMINUS  { $$ = op1(UMINUS, $2); } 
   | INCR var               { $$ = op1(PREINCR, $2); } 
   | var INCR               { $$ = op1(POSTINCR, $1); } 

  stmt: 
  | while {inloop++;} stmt  {--inloop; $$ = stat2(WHILE,$1,$3);} 
  | if stmt else stmt    { $$ = stat3(IF, $1, $2, $4); } 
  | if stmt            { $$ = stat3(IF, $1, $2, NIL); } 
  | lbrace stmtlist rbrace   { $$ = $2; } 

  while: 
    WHILE '(' pattern rparen    { $$ = notnull($3); } 



Excerpts from a LEX analyzer 
"++"         { yylval.i = INCR; RET(INCR); } 
"--"         { yylval.i = DECR; RET(DECR); } 

([0-9]+(\.?)[0-9]*|\.[0-9]+)([eE](\+|-)?[0-9]+)? { 
    yylval.cp = setsymtab(yytext, tostring(yytext),  
                    atof(yytext), CON|NUM, symtab); 
    RET(NUMBER); } 

while   { RET(WHILE); } 
for     { RET(FOR); } 
do      { RET(DO); } 
if      { RET(IF); } 
else    { RET(ELSE); } 
return  { if (!infunc)  
             ERROR "return not in function" SYNTAX;  
          RET(RETURN);  
        } 
•       { RET(yylval.i = yytext[0]); /* everything else */ } 



The whole process 

YACC Lex (or other) 

grammar lexical rules 

other C code 

C compiler 

a.out 

y.tab.c parser lex.yy.c analyzer 



Using Awk for testing RE code 
•  regular expression tests are described in a very small specialized 

language: 

^a.$    ~       ax 
                aa 
        !~      xa 
                aaa 
                axy 

•  each test is converted into a command that exercises awk: 
 echo 'ax' | awk '!/^a.$'/ { print "bad" }' 

•  illustrates 
–  little languages 
–  programs that write programs 
–  mechanization 



Unit testing 
•  code that exercises/tests small area of functionality 

–  single method, function, ... 
•  helps make sure that code works and stays working  

–  make sure small local things work so can build larger things on top 
•  very often used in "the real world" 

–  e.g., can't check in code unless has tests and passes them 
•  often have tools to help write tests, run them automatically 

–  e.g., JUnit 

struct { 
 int yesno; char *re; char *text; 
} tests[100] = { 
 1, "x", "x", 
 0, "x", "y", 
 0, 0, 0 
}; 
main() { 
   for (int i = 0; tests[i].re != 0; i++) { 
      if (match(tests[i].re, tests[i].text) != tests[i].yesno) 
         printf("%d failed: %d [%s] [%s]\n", i,  
            tests[i].yesno, tests[i].re, tests[i].text); 
 } 
} 



Lessons 
•  people use tools in unexpected, perverse ways 

–  compiler writing: implementing languages and other tools 
–  object language (programs generate Awk) 
–  first programming language 

•  existence of a language encourages programs to generate it 
–  machine generated inputs stress differently than people do 

•  mistakes are inevitable and hard to change 
–  concatenation syntax 
–  ambiguities, especially with > 
–  function syntax 
–  creeping featurism from user pressure 
–  difficulty of changing a "standard” 

•  bugs last forever 

"One thing [the language designer] should not do is to include 
untried ideas of his own." 
(C. A. R. Hoare, Hints on Programming Language Design, 1973) 




