
COS/MUS 314 
 

Assignment 5: Fourier Analysis 
Assignment due 9 April 2012, 11:59 pm 

	  
This assignment is done with your partner.  
 
Reading & Resources 
ChucK complex and polar data types: 

http://chuck.cs.princeton.edu/doc/language/type.html#complex 
ChucK FFT documentation: Read about Unit Analyzers, especially the FFT 
datatype and its functions. 
 http://chuck.cs.princeton.edu/doc/language/uana.html 
FFT examples:	  	  

http://chuck.cs.princeton.edu/doc/examples/analysis/fft.ck 
http://chuck.cs.princeton.edu/doc/examples/analysis/fft2.ck 

FFT handout: We haven’t talked about all of this in class yet, but you may find it 
useful. 

http://www.cs.princeton.edu/~fiebrink/314/2010/week8/FFT_handout_2010.pdf 
 
Optional further reading on Fourier analysis and FFT: 
 http://music.columbia.edu/cmc/MusicAndComputers/chapter3/03_03.php 
 http://music.columbia.edu/cmc/MusicAndComputers/chapter3/03_04.php 
 
 
ChucK’s FFT Unit Analyzer in a nutshell 
ChucK’s FFT object allows you to compute the spectrum of a sound over a 
window of time. To take an FFT, you specifically need to do the following: 
 1. Instantiate an FFT object. For example: 
  FFT f; 
 
 2. Connect this object to your sound source using => . Also connect the 
object to blackhole (because blackhole will “suck” the samples from your FFT, 
which will in turn pull samples from your sound source… no blackhole means no 
sound to analyze). Note that, just with Unit Generators, you can instantiate the 
object on the same line as connecting it within your patch. For example, to take 
an FFT of sound coming in from the microphone: 
  adc => FFT f => blackhole; 
 
 3. Set the parameters of the FFT. Specifically, you need to set the size—
that is, how many samples of sound are in your analysis window? Equivalently, 
how many “bins” will your FFT have? In class, we referred to this as “N”. N 
should be a power of 2 if your FFT is to truly be “fast”. Common sizes for this 
type of analysis are 64,128, 264, 512, 1024, 2048, 4096. 
 



You should also choose a window function and its size. We haven’t talked 
about windows in class yet, but you can get a glimpse of how this works by 
looking at the FFT handout (link above). For now, it’s fine to use a Hamming 
window whose size is either equal to the FFT size or ½ of the FFT size. For 
example, this code gives you a 1024-point FFT with a 512-sample Hamming 
window: 

1024 => f.size; 
Windowing.hamming(512) => f.window; 

 
 4. Let some time pass. This will fill up the FFT object’s internal buffer of 
sound samples. (The FFT maintains a memory of the last “N” audio samples 
generated by the sound source attached to it.) For example: 
  .2::second => now; 
 
 5. Trigger the FFT computation using the .upchuck() function. This causes 
the object to compute the FFT on the last N samples (which are by now in its 
buffer). 

 f.upchuck(); 
 

 6. Access the results of the FFT by using the .fval(i), .fvals(), .cval(i), or 
.cvals() functions. .fval(i) returns the magnitude of the i-th FFT bin, and .cval(i) 
returns the complex value of the i-th FFT bin. .fvals() returns a float array of all 
N magnitude values, and .cvals() returns a complex array of all N complex 
values. 
 Recall that the FFT divides up the frequencies between 0 and the 
sampling frequency into N evenly-spaced “bins.” Specifically, the i-th FFT “bin” 
corresponds to the frequency FSR*(i/N) where FSR is the sampling frequency and 
N is the FFT size. As a simple example, if you take a 4-point FFT (N = 4) and 
your sample rate is 44,100 Hz, then bin 0 will correspond to a frequency of 
44,100*0/4 = 0Hz, bin 1 will correspond to a frequency of 44,100*1/4 = 11,025Hz, 
bin 2 will correspond to a frequency of 44,100*2/4 = 22,050 Hz, and bin 3 will 
correspond to a frequency of 33075Hz. 
 Also remember that we only need to look at the first N/2 bins, since we’re 
dealing with a digital signal and, as a result, any frequency above FSR/2 (the 
Nyquist frequency) will be indistinguishable from a frequency below FSR/2 (its 
alias). So in the example 4-point FFT, we only care about bins 0 and 1. 
 Example to print out the magnitude and then the complex value of bin 0 
(after upchuck has been called): 
  <<< f.fval(0) >>>; 

<<< f.cval(0) >>>; 
 
 7. Repeat steps 4-6 ad nauseam in order to capture a sequence of FFTs 
describing the spectrum of a sound as the sound changes over time. 



Question 1. FFT practice (6 points) 
 
a) An N-point FFT (i.e., an FFT of a window of N consecutive samples in time) 
will yield N frequency “bins”, equally spaced over the range of 0Hz (“DC”) to the 
sampling frequency (e.g., 44.1 kHz).  
 
Knowing this, discuss one possible advantage and one possible drawback of 
choosing a large value for N. 
 
b) Download the skeleton code from 
http://www.cs.princeton.edu/courses/archive/spring12/cos314/assignments/assig
nment5/Assignment5Skeleton.ck 
 
Currently, this code computes the FFT of the most recent N samples (where 
N=1024), and repeats this every 0.1 seconds. 
 
Fill in the code skeleton to locate the index of the frequency bin with the highest 
magnitude. Use your knowledge of the FFT and the sample rate used by 
miniAudicle (not sure? Go to Preferences menu) to compute the frequency (in 
Hz) associated with that bin. Print out both the index and the associated 
frequency. 
 
There are examples of this sort of simple ChucK pitch tracker online. Do not 
seek them out or look at them. The code for this question must be entirely your 
own original work. 
 

Congratulations! You now have a simple pitch tracker.  
 
 
c) Plug in headphones (and restart the virtual machine). Now, within the same 
ChucK file, create a SinOsc and continually update its frequency to be the 
frequency found by your pitch tracker. (Now you can hear the pitch identified by 
your pitch tracker instead of trying to guess whether the values it prints out are 
correct.) 
 
d) Experiment with different input signals and describe what you find. Sing or 
play an instrument into the microphone. Does the FFT peak frequency 
correspond to the true fundamental? If not, do you see any pattern in the 
mistakes it makes? Also experiment with speech, noise, and other sounds. Do 
you notice anything interesting? 
 
Question 2: Extra FFT practice (4 Points) 
Pick (at least) one of the following options to get some more practice with FFTs. 
 
a) Pitch tracker improvement: Describe a few ways that you might improve your 
pitch tracker to be more robust, accurate, useful, etc. Implement at least one 



improvement. Submit your updated code and your written comments on why you 
did what you did and whether you succeeded in improving performance. 
 
OR 
 
b) Additive synthesis from FFT: Analyze a recording of some pitched sound (e.g., 
a voice, instrument, bell, etc.) using Audacity’s “Plot Spectrum” tool. (Don’t use 
the spectrogram – just look at an FFT at one point in time, by selecting a section 
of audio with the mouse and clicking on AnalyzePlot Spectrum in the menu 
bar.) Identify the most prominent frequency components by finding peaks in the 
spectrum. Play around with the FFT size and window type to try to get the most 
useful peaks. (Notice that the tool will “snap” the vertical cursor to peaks and 
display the precise frequency value at the peak, right below the spectrum.) Also 
pay attention to the relative strengths of the peaks. Audacity gives you peak 
values in decibels and not absolute amplitudes, so you should know that a 
change of 10 dB is equivalent to approximately a factor of 3.16 in amplitude. 

Use this knowledge of peak location and relative strength to resynthesize 
the sound using additive synthesis (i.e., with a finite number of SinOscs with 
specific frequencies and amplitudes).  

Comment on the results. Is your synthesized sound a good match to the 
original? How sensitive is the quality of your synthesized sound to the number of 
SinOscs you use? How might you further improve the quality of the synthesized 
sound? 

Submit your synthesis code, your recorded sound example, and (if 
necessary) information about the precise time point within the sound example 
that you are trying to resynthesize. 
 
OR 
 
c) Implement a phone dialing interpreter in ChucK: 

When dialing, landline phones represent each dialed digit using two 
simultaneous sine waves at specific frequencies. Take a glance at 
http://en.wikipedia.org/wiki/Dual-tone_multi-frequency to learn more. Note the 
DTMF frequency table, which you could use to synthesize perfect dialing signals 
in ChucK using only two SinOscs! 

Now, implement a phone dialing interpreter. In the simplest case, your 
interpreter will be a piece of ChucK code that listens to audio input consisting of a 
single dialed digit (with no silence, noise, etc.) and accurately identifies (and 
prints out) the digit. If you want to do better, make a dialing interpreter that can 
accurately handle silence (i.e., no digit being dialed) and sequences of 
consecutive keys, so that you can play it an entire phone number and it will print 
out the correct number sequence. Test your code using a real phone or a 
simulator such as http://sio.midco.net/~dfranklin/phonedial/. 

Submit your code along with a short statement describing what you did 
and how well you believe it works. If you use an FFT in your analysis, defend 
your choice of FFT size. 



 
 
What to turn in: 
-‐ Written work for questions 1a, 1d 
-‐ Code for questions 1b and 1c (could be the same piece of code) 
-‐ Materials for whichever part of question 2 you chose. If you submit answers to 

more than one part of question 2, we will give you feedback on everything 
and we’ll assign you the grade of whatever part gives you the highest score. 


