5&"-’
R

Assembly Language: Overview

Goals of this Lecture

* Help you learn:
* The basics of computer architecture
* The relationship between C and assembly
language
* |1A-32 assembly language, through an example

Context of this Lecture

Second half of the course

B

s

9

;«
(eerp feT)

e

o B

Starting Now Afterward
C Language ’ Application Program ‘
language
’ Assembly Language ‘ levels ’ Operating System ‘
tour

’ Machine Language ‘ I Hardware

service
levels

tour

Three Levels of Languages

gmﬂ

High-Level Language

+ Make programming
easier by describing

5&"-’
R

operations Iin a semi- S = (02
naﬂnaHanguage while (n > 1) {
- Increase the portability count++;
of the code if (n &*;)+ .
n=n H
* One line may involve else
many low-level n = n/2;
operations }
* Examples: C, C++,
Java, Pascal, ...
Assembly Language
» Tied to the specifics movl $0, %ecx
i 1 :
of the underlying °P! mpl $1, %edx
machine jle endloop
addl $1, %ecx
+ Commands and movl %edx, %eax
names to make the andl $1, %eax
je else
code readable and movl %edx, %eax
writeable by humans addl %eax, %edx
addl %eax, %edx
* Hand-coded addl 51, %edx
jmp endif
assembly code may else:
.. sarl $1, %edx
be more efficient endif:
Jjmp loop

* E.g., IA-32 from Intel

endloop:

Machine Language

5&4’-’
R

+ Also tied to the
underlying machine

0000 0000 0000 0000 0000 0000 0000 0000

° What the Computer sees 0000 0000 0000 0000 0000 0000 0000 0000

d deal ith 9222 9120 1121 A120 1121 A121 7211 0000

an eals wit 0000 0001 0002 0003 0004 0005 0006 0007

. . . 0008 0009 000A 000B 000C 000D 00OE OOOF

+ Every instruction is a 0000 0000 0000 FE1Q0 FACE CAFE ACED CEDE
sequence of one or

more numbers 1234 5678 9ABC DEFO 0000 0000 FOOD 0000

0000 0000 EEEE 1111 EEEE 1111 0000 0000

« All stored in memory on B1B2 F1F5 0000 0000 0000 0000 0000 0000

the computer, and read
and executed

* Unreadable by humans

Why Learn Assembly Language?

+ Write faster code (even in high-level language)
+ By understanding which high-level constructs are better
+ ... in terms of how efficient they are at the machine level

» Understand how things work underneath
+ Learn the basic organization of the underlying machine
+ Learn how the computer actually runs a program
+ Design better computers in the future

+ Some software is still written in assembly language
+ Code that really needs to run quickly
+ Code for embedded systems, network processors, etc.

Why Learn Intel IA-32 Assembly?

* Program natively on our computing platform
* Rather than using an emulator to mimic another machine

+ Learn instruction set for the most popular platform
* Most likely to work with Intel platforms in the future

* But, this comes at some cost in complexity
+ IA-32 has a large and varied set of instructions
* More instructions than are really useful in practice

+ Fortunately, you won’t need to use everything

gmﬂ

Computer Architecture

B
A '?a %

A Typical Computer A

Emumi

CpPU ces CpPU

I/0 bus
| | | | |
I’I I\I I\I L] L] L | [ROM]
“‘5‘,\) % —
Network

11

John Von Neumann (1903-1957)

* In computing
+ Stored program computers
+ Cellular automata
+ Self-replication

* Other interests
+ Mathematics (set theory, ergodic theory)
* Nuclear physics (hydrogen bomb)

* Princeton connection
* Princeton Univ & IAS, 1930-death

« Known for “VYon Neumann architecture”
 In contrast to less-successful “Harvard architecture”

B
A ;2 %

Von Neumann Architecture AL
+ Central Processing Unit —
» Control unit Control
+ Fetch, decode, and execute Unit
- Arithmetic and logic unit ALU
+ Execution of low-level operations
« General-purpose registers _
) Registers
+ High-speed temporary storage
+ Data bus
* Provide access to memory
Data bus
Random Access
Memory (RAM)

Von Neumann Architecture

* Memory

gmﬂ

CPU

+ Store executable machine-language Control

instructions (text section)

Unit

« Store data (rodata, data, bss, heap, ALU

and stack sections)

TEXT

RODATA

DATA

BSS

HEAP

STACK

Registers

Data bus

Random Access
Memory (RAM)

5&"-’
R

Control Unit: Instruction Pointer

- Stores the location of the next instruction

+ Address to use when reading machine-language
instructions from memory (i.e., in the text section)

+ Changing the instruction pointer (EIP)
* Increment to go to the next instruction
+ Or, load a new value to “jump” to a new location

EIP

A\("

Control Unit: Instruction Decoder -

+ Determines what operations need to take place
+ Translate the machine-language instruction

+ Control what operations are done on what data
+ E.g., control what data are fed to the ALU
+ E.g., enable the ALU to do multiplication or addition
* E.g., read from a particular address in memory

srcl src2
operation —* — flag/carry

dst 16

-~

_M)
ok
J

Registers 2

et orc

« Small amount of storage on the CPU
+ Can be accessed more quickly than main memory

* Instructions move data in and out of registers
+ Loading registers from main memory
« Storing registers to main memory

* Instructions manipulate the register contents
* Registers essentially act as temporary variables
* For efficient manipulation of the data

* Registers are the top of the memory hierarchy
+ Ahead of main memory, disk, tape, ...

-

-
Keeping it Simple: All 32-bit Words

« Simplifying assumption: all data in four-byte units
* Memory is 32 bits wide
* Registers are 32 bits wide

EAX
EBX

* In practice, can manipulate different sizes of data)

C Code vs. Assembly Code

5&"-’
ok

Kinds of Instructions

count = 0;
while (n > 1) {
count++;
if (n & 1)
n =n*3 + 1;
else

n =n/2;

Reading and writing data
+ count=0
°n

Arithmetic and logic operations

+ Increment: count++
* Multiply:n*3

- Divide: n/2

+ Logical AND: n & 1

5\“3

|

Checking results of comparisons

* Is (n >1) true or false?

* Is (n & 1) non-zero or zero?

Changing the flow of control

+ To the end of the while loop (if “n >1")
- Back to the beginning of the loop
+ To the else clause (if “n & 1” is 0)

20

10

Variables in Registers

count = 0;
while (n > 1) {
count++;
if (n & 1)
n =n*3 + 1;
else

n =n/2;

Registers

n $edx
count $%ecx

Referring to a register: percent sign (“%?)

) %
)

m:mmmi

21

Immediate and Register Addressing

count=0; e movl $0, %ecx
while (n>1) {
count++; — addl $1, %ecx
if (né&l)
n = n*3+1;
else
n=n/2; Read directly
from the
} instruction

Referring to a immediate operand: dollar sign (“$”)

gmﬂ

written to
a register

22

11

5&"-’
R

Immediate and Register Addressing

count=0;
while (n>1) {

count++;
. movl %edx, %eax
if (n&l) andl $1, %eax

v

n = n*3+1;
else
n =n/2;

Computing intermediate value in register EAX »

gmﬂ

Immediate and Register Addressing

count=0;
while (n>1) {
count++;
if (né&l)

movl %edx, %eax
— * . ——p ’

n = n*3+1; addl %eax, %edx
else addl %eax, %edx

addl $1, %edx
n =n/2;

Adding n twice is cheaper than multiplication! "

12

5&"-’
R

Immediate and Register Addressing

count=0;
while (n>1) {
count++;
if (n&l)
n = n*3+1;
else
n =n/2;, — sarl $1, %edx

Shifting right by 1 bit is cheaper than division!

25

Changing Program Flow

« Cannot simply run next instruction
+ Check result of a previous operation
« Jump to appropriate next instruction

count=0;
while (n>1) { * Flags register (EFLAGS)
count++; + Stores the status of operations, such
. as comparisons, as a side effect
if (n&l) - E.g., last result was positive, negative,
n = n*3+1; zero, etc.
else « Jump instructions
n =n/2; + Load new address in instruction pointer
} + Example jump instructions

+ Jump unconditionally (e.g., “}")
. Jump |f Zero (eg’ “n&1,,)
+ Jump if greater/less (e.g., “n>1") 2

13

Conditional and Unconditional Jumps

« Comparison empl compares two integers
+ Done by subtracting the first number from the second
+ Discarding the results, but setting flags as a side effect
+ Example:
e cmpl $1, %edx (computes %edx — 1)

* jle endloop (checks whether result was 0 or negative)

+ Logical operation and1l compares two integers

« Example:
- andl $1, %eax (bit-wise AND of %eax with 1)
> je else (checks whether result was 0)

+ Also, can do an unconditional branch jmp
+ Example:
e jmp endif and jmp loop

e

9

&

27

Jump and Labels: While Loop

loop:
cmpl $1, %edx
(//”__,————”’;? jle endloop
(n>1) {

while

Checking if EDX
is less than or
equal to 1.
}
\\\555-5--"“‘——~___ﬁ> jmp loop
endloop:

5\1#

28

14

5&"-’
R

Jump and Labels: While Loop

movl $0, %ecx

loop:
cmpl $1, %edx
count=o;/ jle endloop
while’ (n>1) { addl $1, %ecx

movl %edx, %eax
count++; andl $1, %eax
if (n&l) je else
movl %edx, %eax
— * .
n = n*3+1; addl %eax, %edx

else addl %eax, %edx
addl $1, %edx
n = n/2; jmp endif
else:
} sarl $1, %edx
endif:
Jjmp loop
endloop:

29

Jump and Labels: If-Then-Else

558 wurme

A

£

movl %$edx, %eax
andl $1, %eax

if (n&l) je else
else “then” block
Jjmp endif
else:
“else” block
endif:

30

15

Jump and Labels: If-Then-Else

movl $0, %ecx

loop:
cmpl $1, %edx
count=0:; jle endloop
while (n>1) ({ addl $1, %ecx
movl %edx, %eax
count++; andl $1, %eax
if (né&l) je else
movl %edx, %eax
- * .
n = n*3+1; addl %eax, %edx
else “then” block addl %eax, %edx
addl $1, %edx
n = n/2; Jmp endif
else:
} “else” block sarl $1, %edx
endif:
jmp loop
endloop:

31

A

Making the Code More Efficient...

558 wurme

£

movl $0, %ecx

loop:
cmpl $1, %edx
count=0; jle endloop
while (n>1) { addl $1, %ecx
movl %edx, %eax
count++; andl $1, Seax
if (n&l) je else
movl %edx, %eax
n = n*3+1; addl %eax, %edx
else addl %eax, %edx
addl 2edx
n =n/2; 3mp
else:
} sarl $1, %$edx

- endif:
Replace with jmp loop

“ymp loop” endloop:

32

Complete Example

movl
loop:
P cmpl
count=0; jle

while (n>1) { addi
movwv

count++; andl
if (n&l) Je

movl

n = n*¥3+1; addl

else addl
addl

else:
} sarl

endif:
jmp
endloop:

n $edx
count %ecx

$0, %ecx

$1, %edx
endloop
$1, %ecx
%$edx, %eax
$1, %eax
else

%$edx, %eax
$eax, %edx
%$eax, %edx
$1, %edx
endif

$1, %edx

loop

5&"-’
R

33

Reading I1A-32 Assembly Language

* Referring to a register: percent sign (“%”)

+ E.g., “%ecx” or “%eip”

« Referring to immediate operand: dollar sign (“$”)

 E.g., “$1” for the number 1

« Storing result: typically in the second argument
+ E.g. “addl $1, %ecx” increments register ECX
+ E.g., “movl %edx, Y%eax” moves EDX to EAX

+ Assembler directives: starting with a period (

)

+ E.g., “.section .text” to start the text section of memory

« Comment: pound sign (“#”)

+ E.g., “# Purpose: Convert lower to upper case”

34

17

B

s

Conclusions

+ Assembly language
* In between high-level language and machine code
* Programming the “bare metal” of the hardware

 Loading and storing data, arithmetic and logic
operations, checking results, and changing control flow

+ To get more familiar with IA-32 assembly
* Read more assembly-language examples
+ Chapter 3 of Bryant and O’Hallaron book
+ Generate your own assembly-language code
+ gcc217 —S —02 code.c

35

18

