
1

1

Testing

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 6

2

Relevant Quotations

“On two occasions I have been asked [by members of Parliament!],

ʻPray, Mr. Babbage, if you put into the machine wrong figures, will

the right answers come out?ʼ I am not able rightly to apprehend the

kind of confusion of ideas that could provoke such a question.”

 ‒ Charles Babbage

“Program testing can be quite effective for showing the presence

of bugs, but is hopelessly inadequate for showing their absence.”

 ‒ Edsger Dijkstra

“Beware of bugs in the above code; I have only proved it correct,  
not tried it.”  
 ‒ Donald Knuth

2

3

Goals of this Lecture

• Help you learn about:

•  Internal testing

•  External testing

•  General testing strategies

• Why?

•  Itʼs hard to know if a large program works properly

•  A power programmer expends at least as much effort

writing test code as he/she expends writing the
program itself

•  A power programmer knows many testing strategies

4

Program Verification

•  Ideally: Prove that your program is correct

•  Can you prove properties of the program?

•  Can you prove that it even terminates?!!!

•  See Turingʼs “Halting Problem”

Program
Checker program.c

Right or Wrong
Specification

?

3

5

Program Testing

• Pragmatically: Convince yourself that your
program probably works

Testing
Strategy program.c

Probably Right
or

Certainly Wrong

Specification

6

External vs. Internal Testing

• Types of testing

•  External testing

•  Designing data to test your program

•  Internal testing

•  Designing your program to test itself

4

7

External Testing

• External Testing

•  Designing data to test your program

•  4 techniques…

8

Coverage Testing

(1) Statement testing

•  “Testing to satisfy the criterion that each statement in a program be
executed at least once during program testing.”

‒ Glossary of Computerized System and Software Development Terminology

(2) Path testing

•  “Testing to satisfy coverage criteria that each logical path through

the program be tested. Often paths through the program are
grouped into a finite set of classes. One path from each class is then
tested.”

‒ Glossary of Computerized System and Software Development Terminology

•  More difficult than statement testing

•  For simple programs, can enumerate all paths through the code

•  Otherwise, sample paths through code with random input

5

9

Coverage Testing Example

•  Example pseudocode:

if (condition1)
 statement1;
else
 statement2;
…
if (condition2)
 statement3;
else
 statement4;
…
if (condition3)
 statement5;
else
 statement6;
…

Statement testing:

Should make sure all 3 “if”
statements and all 6 nested
statements are executed

Path testing:

Should make sure all logical
paths are executed

Note: combinatorial!

10

Brute Force: Stress Testing

(3) Stress testing

•  “Testing conducted to evaluate a system or component at or beyond

the limits of its specified requirements”

‒ Glossary of Computerized System and Software Development Terminology

•  What to generate

•  Very large input sets

•  Random input sets (binary vs. ASCII)

•  Use computer to generate input sets

6

11

Stress Testing Example 1

•  Specification: Copy all characters of stdin to stdout

•  Attempt:

#include <stdio.h>
int main(void) {
 char c;
 while ((c = getchar()) != EOF)
 putchar(c);
 return 0;
}

Does it work?

Hint: Consider random input sets

12

Stress Testing Example 2

•  Specification: Print number of characters in stdin

•  Attempt:

#include <stdio.h>
int main(void) {
 char charCount = 0;
 while (getchar() != EOF)
 charCount++;
 printf("%d\n", charCount);
 return 0;
}

Does it work?

Hint: Consider large input sets

7

13

Apply Smarts: Boundary Testing

(4) Boundary testing

•  “A testing technique using input values at, just below, and just

above, the defined limits of an input domain; and with input values
causing outputs to be at, just below, and just above, the defined
limits of an output domain.”

‒ Glossary of Computerized System and Software Development Terminology

•  Alias corner case testing

14

Boundary Testing Example

•  Specification:

•  Read line from stdin, store as string in array (without ʻ\nʼ)

•  First attempt:

int i;
char s[ARRAYSIZE];
for (i=0; ((i < ARRAYSIZE-1) && (s[i]=getchar()) != '\n'); i++)
 ;
s[i] = '\0';

•  Consider boundary conditions:

1. stdin contains no characters (empty file)

2. stdin starts with '\n' (empty line)

3. stdin contains characters but no '\nʻ

4. stdin line contains exactly ARRAYSIZE-1 characters

5. stdin line contains exactly ARRAYSIZE characters

6. stdin line contains more than ARRAYSIZE characters

8

15

Testing the First Attempt

•  Embed code in complete program:

#include <stdio.h>
enum {ARRAYSIZE = 5}; /* Artificially small */
int main(void)
{
 int i;
 char s[ARRAYSIZE];
 for (i=0; ((i < ARRAYSIZE-1) && (s[i]=getchar()) != '\n'); i++)
 ;
 s[i] = '\0';
 for (i = 0; i < ARRAYSIZE; i++) {
 if (s[i] == '\0') break;
 putchar(s[i]);
 }
 return 0;
}

16

Test Results for First Attempt

1.  stdin contains no characters (empty file)

•  → ÿÿÿÿÿ

2.  stdin starts with '\n' (empty line)

•  n →

3.  stdin contains characters but no '\nʻ

•  ab → abÿÿÿ

4.  stdin line contains exactly ARRAYSIZE-1 characters

•  abcn → abc

5.  stdin line contains exactly ARRAYSIZE characters

•  abcdn → abcd

6.  stdin line contains more than ARRAYSIZE characters

•  abcden → abcd

int i;
char s[ARRAYSIZE];
for (i=0; ((i < ARRAYSIZE) && (s[i]=getchar()) != '\n')); i++)
 ;
s[i] = '\0';

Pass

Pass

Pass

Pass or Fail???

Fail

Fail

Again:

Does it work?

9

17

Ambiguity in Specification

•  If stdin line is too long, what should happen?

•  Keep first ARRAYSIZE characters, discard the rest?

•  Keep first ARRAYSIZE -1 characters + '\0' char, discard the rest?

•  Keep first ARRAYSIZE -1 characters + '\0' char, save the rest for the

next call to the input function?

•  Probably, the specification didnʼt even say what to do if
MAXLINE is exceeded

•  Probably the person specifying it would prefer that unlimited-length

lines be handled without any special cases at all

•  Moral: testing has uncovered a design problem, maybe even a

specification problem!

•  Define what to do

•  Keep first ARRAYSIZE -1 characters + '\0' char, save the rest for the

next call to the input function

18

Testing A Second Attempt

•  Embed code in complete program:

#include <stdio.h>
enum {ARRAYSIZE = 5}; /* Artificially small */
int main(void)
{
 int i;
 char s[ARRAYSIZE];
 for (i = 0; i < ARRAYSIZE; i++) {
 s[i] = getchar();
 if ((s[i] == EOF) || (s[i] == '\n'))
 break;
 }
 s[i] = '\0';
 for (i = 0; i < ARRAYSIZE; i++) {
 if (s[i] == '\0') break;
 putchar(s[i]);
 }
 return 0;
}

10

19

Test Results for Second Attempt

1.  stdin contains no characters (empty file)

•  →

2.  stdin starts with '\n' (empty line)

•  n →

3.  stdin contains characters but no '\nʻ

•  ab → ab

4.  stdin line contains exactly ARRAYSIZE-1 characters

•  abcn → abc

5.  stdin line contains exactly ARRAYSIZE characters

•  abcdn → abcd

6.  stdin line contains more than ARRAYSIZE characters

•  abcden → abcd

 int i;
 char s[ARRAYSIZE];
 for (i = 0; i < ARRAYSIZE; i++) {
 s[i] = getchar();
 if ((s[i] == EOF) || (s[i] == '\n'))
 break;
 }
 s[i] = '\0';

Pass

Pass

Pass

Pass

Pass

Pass

Again:

Does it work?

20

Morals of this Little Story

•  Testing can reveal the presence of bugs, but not their
absence

•  Complicated boundary cases often are symptomatic of bad
design or bad specification

•  Clean up the specification if you can

•  Otherwise, fix the code

11

21

External Testing Summary

•  External testing: Designing data to test your program

•  External testing taxonomy 

 (1) Statement testing 
 (2) Path testing 
 (3) Stress testing 
 (4) Boundary testing 

22

Internal Testing

•  Internal testing

•  Designing your program to test itself

•  4 techniques…

12

23

Checking Invariants

(1) Checking invariants

•  Function should check aspects of data structures that shouldnʼt vary

•  Remember this for Assignment 6…

•  Example: “doubly-linked list insertion” function

•  At leading and trailing edges

•  Traverse doubly-linked list;  

when node x points forward 
 to node y, does node y point 
 backward to node x?

•  Example: “balanced binary search tree insertion” function

•  At leading and trailing edges

•  Traverse tree; 
are nodes still sorted?

What other 
invariants could 
 be checked?

What other 
invariants could 
 be checked?

24

Checking Invariants (cont.)

•  Convenient to use assert to check invariants

int isValid(MyType object) {
 …
 Check invariants here.
 Return 1 (TRUE) if object passes
 all tests, and 0 (FALSE) otherwise.
 …
}

void myFunction(MyType object) {
 assert(isValid(object));
 …
 Manipulate object here.
 …
 assert(isValid(object));
}

13

25

Aside: The assert Macro

•  The assert macro

•  One actual parameter

•  Should evaluate to 0 (FALSE) or non-0 (TRUE)

•  If TRUE:

•  Do nothing

•  If FALSE:

•  Print message to stderr like “assert at line x failed”

•  Exit the process

•  Note: this is for developers, not users – do not expect to use for
actual error reporting

26

Uses of assert
•  Typical uses of assert

•  Validate formal parameters

•  Check for “impossible” logical flow

•  Check invariants

int gcd(int i, int j) {
 assert(i > 0);
 assert(j > 0);
 …
}

switch (state) {
 case START: … break;
 case COMMENT: … break;
 …
 default: assert(0); /* Never should get here */
}

14

27

Checking Return Values

(2) Checking function return values

•  In Java and C++:

•  Method that detects error can “throw a checked exception”

•  Calling method must handle the exception (or rethrow it)

•  In C:

•  No exception-handling mechanism

•  Function that detects error typically indicates so via return value

•  Programmer easily can forget to check return value

•  Programmer (generally) should check return value

28

Checking Return Values (cont.)

(2) Checking function return values (cont.)

•  Example: scanf() returns number of values read

•  Example: printf() can fail if writing to file and disk is full; returns
number of characters (not values) written

int i;
if (scanf("%d", &i) != 1)
 /* Error */

int i = 100;
if (printf("%d", i) != 3)
 /* Error */

int i;
scanf("%d", &i);

Bad code
 Good code

int i = 100;
printf("%d", i);

Bad code???
 Good code???

overkill?

15

29

Changing Code Temporarily

(3) Changing code temporarily

•  Temporarily change code to generate artificial boundary or stress
tests

•  Example: Array-based sorting program

•  Temporarily make array very small

•  Does the program handle overflow?

•  Remember this for Assignment 3…

•  Example: Program that uses a hash table

•  Temporarily make hash function return a constant

•  All bindings map to one bucket, which becomes very large

•  Does the program handle large buckets?

30

Leaving Testing Code Intact

(4) Leaving testing code intact

•  Do not remove testing code when your code is finished

•  In industry, no code ever is “finished”

•  Leave tests in the code

•  Maybe embed in calls of assert

•  Calls of assert can be disabled; described in precept

16

31

Internal Testing Summary

•  Internal testing: Designing your program to test itself

•  Internal testing techniques

(1) Checking invariants

(2) Checking function return values

(3) Changing code temporarily

(4) Leaving testing code intact

Beware: Do you see a
conflict between internal
testing and code clarity?

32

General Testing Strategies

• General testing strategies

•  5 strategies…

17

33

Automation

(1) Automation

•  Create scripts and data files 
 to test your programs

•  Create software clients  
 to test your modules

•  Know what to expect

•  Generate output that is easy 

 to recognize as right or wrong

•  Automated testing can provide:

•  Much better coverage than manual testing

•  Bonus: Examples of typical use of your code

Have you used
these techniques
in COS 217
programming
assignments?

34

Testing Incrementally

(2) Testing incrementally

•  Test as you write code

•  Add test cases as you create new code

•  Test individual modules, and then their interaction

•  Do regression testing

•  After a bug fix, make sure program has not “regressed”

•  That is, make sure previously working code is not broken

•  Rerun all test cases

•  Note the value of automation

18

35

Testing Incrementally (cont.)

(2) Testing incrementally (cont.)

•  Create scaffolds and stubs to test the code that you care about

Function that you care about

Function 2 Function 3

Function 1

Scaffold: Temporary

code that calls code

that you care about

Stub: Temporary

code that is called

by code that you

care about

36

Comparing Implementations

(3) Comparing implementations

•  Make sure independent implementations behave the same

Could you have you used
this technique in COS 217
programming assignments?

19

37

Bug-Driven Testing

(4) Bug-driven testing

•  Find a bug  create a test case that catches it

•  Facilitates regression testing

38

Fault Injection

(5) Fault injection

•  Intentionally (temporarily) inject bugs

•  Determine if testing finds them

•  Test the testing

20

39

General Strategies Summary

•  General testing strategies

(1) Automation

(2) Testing incrementally

(3) Comparing implementations

(4) Bug-driven testing

(5) Fault injection

40

Who Tests What

•  Programmers

•  White-box testing

•  Pro: Programmer knows all data paths

•  Con: Influenced by how code is designed/written

•  Quality Assurance (QA) engineers

•  Black-box testing

•  Pro: No knowledge about the implementation

•  Con: Unlikely to test all logical paths

•  Customers

•  Field testing

•  Pros: Unexpected ways of using the software; “debug” specs

•  Cons: Not enough cases; customers donʼt like “participating” in this

process; malicious users exploit the bugs

21

41

Summary

•  External testing taxonomy

•  Statement testing

•  Path testing

•  Stress testing

•  Boundary testing

•  Internal testing techniques

•  Checking invariants

•  Checking function return values

•  Changing code temporarily

•  Leaving testing code intact

42

Summary (cont.)

•  General testing strategies

•  Automation

•  Testing incrementally

•  Regression testing

•  Scaffolds and stubs

•  Comparing independent implementations

•  Bug-driven testing

•  Fault injection

•  Test the code, the tests – and the specification!

