The Design of C: A Rational Reconstruction

Goals of this Lecture

• Help you learn about:
 • The decisions that were available to the designers of C
 • The decisions that were made by the designers of C
 … and thereby…
 • C !

• Why?
 • Learning the design rationale of the C language provides a richer understanding of C itself
 • … and might be more interesting than simply learning the language itself!
 • A power programmer knows both the programming language and its design rationale

• But first a preliminary topic…
Number Systems

Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0
- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, …)
 - Characters (‘a’, ‘z’, …)
 - Pixels, sounds
 - Internet addresses
- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic
Base 10 and Base 2

- **Decimal (base 10)**
 - Each digit represents a power of 10
 - \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0\)

- **Binary (base 2)**
 - Each bit represents a power of 2
 - \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22\)

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders

\[
\begin{align*}
12 / 2 &= 6 \quad R = 0 \\
6 / 2 &= 3 \quad R = 0 \\
3 / 2 &= 1 \quad R = 1 \\
1 / 2 &= 0 \quad R = 1
\end{align*}
\]
Result = 1100

Writing Bits is Tedious for People

- **Octal (base 8)** – easy to write using a 10-key keypad
 - Digits 0, 1, ..., 7

- **Hexadecimal (base 16)** – easier to manipulate
 - Digits 0, 1, ..., 9, A, B, C, D, E, F

\[
\begin{align*}
0000 &= 0 & 1000 &= 8 \\
0001 &= 1 & 1001 &= 9 \\
0010 &= 2 & 1010 &= A \\
0011 &= 3 & 1011 &= B \\
0100 &= 4 & 1100 &= C \\
0101 &= 5 & 1101 &= D \\
0110 &= 6 & 1110 &= E \\
0111 &= 7 & 1111 &= F
\end{align*}
\]

Thus the 16-bit binary number
\[
1011 \ 0010 \ 1010 \ 1001
\]
converted to hex is

B2A9
Representing Colors: RGB

- Three primary colors
 - Red
 - Green
 - Blue
- Intensity
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color
- In HTML, e.g. course “Schedule” Web page
 - Red: `De-Comment Assignment Due`
 - Blue: `Reading Period`
- Same thing in digital cameras
 - Each pixel is a mixture of red, green, and blue

Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)
- Unsigned integer
 - No sign bit
 - Always 0 or a positive number
 - All arithmetic is modulo 2^n
- Examples of unsigned integers
 - 00000001 → 1
 - 00001111 → 15
 - 00010000 → 16
 - 00100001 → 33
 - 11111111 → 255
Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

Base 10

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Carry</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Base 2

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carry</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR ("exclusive OR")

AND

0100 0101 + 0110 0111
1010 1100

69 103 172
Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, ..., 99999
 - E.g., eight-bit numbers 0, 1, ..., 255

- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, ...
 - E.g., eight-bit number goes from 255 to 0, 1, ...

- Adding 2^n doesn’t change the answer
 - For eight-bit number, n=8 and $2^n=256$
 - E.g., $(37 + 256) \mod 256$ is simply 37

- This can help us do subtraction…
 - Suppose you want to compute $a - b$
 - Note that this equals $a + (256 - 1 - b) + 1$

One’s and Two’s Complement

- One’s complement: flip every bit
 - E.g., b is 01000101 (i.e., 69 in decimal)
 - One’s complement is 10111010
 - That’s simply 255-69

- Subtracting from 11111111 is easy (no carry needed!)
 \[
 \begin{array}{c}
 1111 \ 1111 \\
 - \ 0100 \ 0101 \\
 \hline
 1011 \ 1010
 \end{array}
 \]

- Two’s complement
 - Add 1 to the one’s complement
 - E.g., $(255 - 69) + 1 \Rightarrow 1011 \ 1011$
Putting it All Together

• Computing “a – b”
 • Same as “a + 256 – b”
 • Same as “a + (255 – b) + 1”
 • Same as “a + onesComplement(b) + 1”
 • Same as “a + twosComplement(b)”

• Example: 172 – 69
 • The original number 69: 0100 0101
 • One’s complement of 69: 1011 1010
 • Two’s complement of 69: 1011 1011
 • Add to the number 172: 1010 1100
 • The sum comes to: 0110 0111
 • Equals: 103 in decimal

Signed Integers

• Sign-magnitude representation
 • Use one bit to store the sign
 • Zero for positive number
 • One for negative number
 • Examples
 • E.g., 0010 1100  44
 • E.g., 1010 1100  -44
 • Hard to do arithmetic this way, so it is rarely used

• Complement representation
 • One’s complement
 • Flip every bit
 • E.g., 1101 0011  -44
 • Two’s complement
 • Flip every bit, then add 1
 • E.g., 1101 0100  -44
Overflow: Running Out of Room

- Adding two large integers together
 - Sum might be too large to store in the number of bits available
 - What happens?

- Unsigned integers
 - All arithmetic is “modulo” arithmetic
 - Sum would just wrap around

- Signed integers
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536

Bitwise Operators: AND and OR

- Bitwise AND (&)
 - Mod on the cheap!
 - E.g., 53 % 16
 - … is same as 53 & 15;

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>&</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Bitwise OR (I)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

53 → 0 0 1 1 0 0 1

& 15 → 0 0 0 0 1 1 1

5 → 0 0 0 0 1 0 1
Bitwise Operators: Not and XOR

• One’s complement (\(~\))
 • Turns 0 to 1, and 1 to 0
 • E.g., set last three bits to 0
 • \(x = x \& ~7; \)

• XOR (\(^\))
 • 0 if both bits are the same
 • 1 if the two bits are different

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Bitwise Operators: Shift Left/Right

• Shift left (<<): Multiply by powers of 2
 • Shift some \(# \) of bits to the left, filling the blanks with 0

\[
\begin{array}{c}
53 \\
53<<2
\end{array}
\]

\[
\begin{array}{c}
00110101 \\
11010000
\end{array}
\]

• Shift right (>>): Divide by powers of 2
 • Shift some \(# \) of bits to the right
 • For unsigned integer, fill in blanks with 0
 • What about signed negative integers?
 • Can vary from one machine to another!

\[
\begin{array}{c}
53 \\
53>>2
\end{array}
\]

\[
\begin{array}{c}
00110101 \\
00011011
\end{array}
\]
Example: Counting the 1’s

- How many 1 bits in a number?
 - E.g., how many 1 bits in the binary representation of 53?

 \[
 \begin{array}{cccc}
 0 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1 \\
 \end{array}
 \]
 - Four 1 bits

- How to count them?
 - Look at one bit at a time
 - Check if that bit is a 1
 - Increment counter

- How to look at one bit at a time?
 - Look at the last bit: \(n \& 1\)
 - Check if it is a 1: \((n \& 1) == 1\), or simply \((n \& 1)\)

Counting the Number of ‘1’ Bits

```c
#include <stdio.h>
#include <stdlib.h>
int main(void) {
  unsigned int n;
  unsigned int count;
  printf("Number: ");
  if (scanf("%u", &n) != 1) {
    fprintf(stderr, "Error: Expect unsigned int.\n");
    exit(EXIT_FAILURE);
  }
  for (count = 0; n > 0; n >>= 1)
    count += (n & 1);
  printf("Number of 1 bits: %u\n", count);
  return 0;
}
```
Summary

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, …
 - Pixels, sounds, colors, etc.
- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two’s complement for subtraction
- Bitwise operators
 - AND, OR, NOT, and XOR
 - Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic

The Main Event

The Design of C
Goals of C

Designers wanted C to support:
• **Systems programming**
 • Development of Unix OS
 • Development of Unix programming tools

But also:
• **Applications programming**
 • Development of financial, scientific, etc. applications

Systems programming was the primary intended use

The Goals of C (cont.)

The designers of wanted C to be:
• Low-level
 • Close to assembly/machine language
 • Close to hardware

But also:
• Portable
 • Yield systems software that is easy to port to differing hardware
The Goals of C (cont.)

The designers wanted C to be:
- Easy for people to handle
 - Easy to understand
 - Expressive
 - High (functionality/sourceCodeSize) ratio

But also:
- Easy for computers to handle
 - Easy/fast to compile
 - Yield efficient machine language code

Commonality:
- Small/simple

Design Decisions

In light of those goals…
- What design decisions did the designers of C have?
- What design decisions did they make?

Consider programming language features, from simple to complex…
Feature 1: Data Types

• Previously in this lecture:
 • Bits can be combined into bytes
 • Our interpretation of a collection of bytes gives it meaning
 • A signed integer, an unsigned integer, a RGB color, etc.

• A data type is a well-defined interpretation of a collection of bytes

• A high-level programming language should provide primitive data types
 • Facilitates abstraction
 • Facilitates manipulation via associated well-defined operators
 • Enables compiler to check for mixed types, inappropriate use of types, etc.

Primitive Data Types

• Issue: What primitive data types should C provide?

• Thought process
 • C should handle:
 • Integers
 • Characters
 • Character strings
 • Logical (alias Boolean) data
 • Floating-point numbers
 • C should be small/simple

• Decisions
 • Provide integer, character, and floating-point data types
 • Do not provide a character string data type (More on that later)
 • Do not provide a logical data type (More on that later)
• Issue: What integer data types should C provide?

• Thought process
 • For flexibility, should provide integer data types of various sizes
 • For portability at application level, should specify size of each data type
 • For portability at systems level, should define integral data types in terms of natural word size of computer
 • Primary use will be systems programming

Integer Data Types (cont.)

• Decisions
 • Provide three integer data types: short, int, and long
 • Do not specify sizes; instead:
 • int is natural word size
 • \(2 \leq \text{bytes in short} \leq \text{bytes in int} \leq \text{bytes in long} \)

• Incidentally, on hats using gcc217
 • Natural word size: 4 bytes
 • short: 2 bytes
 • int: 4 bytes
 • long: 4 bytes
Integer Constants

- **Issue:** How should C represent integer constants?
- **Thought process**
 - People naturally use decimal
 - Systems programmers often use binary, octal, hexadecimal
- **Decisions**
 - Use decimal notation as default
 - Use “0” prefix to indicate octal notation
 - Use “0x” prefix to indicate hexadecimal notation
 - Do not allow binary notation; too verbose, error prone
 - Use “L” suffix to indicate long constant
 - Do not use a suffix to indicate short constant; instead must use cast
- **Examples**
 - `int`: 123, –123, 0173, 0x7B
 - `long`: 123L, –123L, 0173L, 0x7BL
 - `short`: (short)123, (short)–123, (short)0173, (short)0x7B

Was that a good decision?

Unsigned Integer Data Types

- **Issue:** Should C have both signed and unsigned integer data types?
- **Thought process**
 - Must represent positive and negative integers
 - Signed types are essential
 - Unsigned data can be twice as large as signed data
 - Unsigned data could be useful
 - Unsigned data are good for bit-level operations
 - Bit-level operations are common in systems programming
 - Implementing both signed and unsigned data types is complex
 - Must define behavior when an expression involves both

Why?
Unsigned Integer Data Types (cont.)

- Decisions
 - Provide unsigned integer types: `unsigned short`, `unsigned int`, and `unsigned long`
 - Conversion rules in mixed-type expressions are complex
 - Generally, mixing signed and unsigned converts signed to unsigned
 - See King book Section 7.4 for details

Do you see any potential problems?

Was providing unsigned types a good decision?

What decision did the designers of Java make?

Unsigned Integer Constants

- Issue: How should C represent unsigned integer constants?

- Thought process
 - "L" suffix distinguishes `long` from `int`; also could use a suffix to distinguish signed from unsigned
 - Octal or hexadecimal probably are used with bit-level operators

- Decisions
 - Default is signed
 - Use "U" suffix to indicate unsigned
 - Integers expressed in octal or hexadecimal automatically are unsigned

- Examples
 - `unsigned int`: 123U, 0173, 0x7B
 - `unsigned long`: 123UL, 0173L, 0x7BL
 - `unsigned short`: (short)123U, (short)0173, (short)0x7B
There’s More!

To be continued next lecture!