
1

1

The Design of C: 
A Rational Reconstruction

2

Goals of this Lecture

•  Help you learn about:

•  The decisions that were available to the designers of C

•  The decisions that were made by the designers of C

… and thereby…

•  C !

•  Why?

•  Learning the design rationale of the C language provides a richer

understanding of C itself

•  … and might be more interesting than simply learning the

language itself!

•  A power programmer knows both the programming language and its

design rationale

•  But first a preliminary topic…

2

3

Preliminary Topic

Number Systems

4

Why Bits (Binary Digits)?

•  Computers are built using digital circuits

•  Inputs and outputs can have only two values

•  True (high voltage) or false (low voltage)

•  Represented as 1 and 0

•  Can represent many kinds of information

•  Boolean (true or false)

•  Numbers (23, 79, …)

•  Characters (ʻaʼ, ʻzʼ, …)

•  Pixels, sounds

•  Internet addresses

•  Can manipulate in many ways

•  Read and write

•  Logical operations

•  Arithmetic

3

5

Base 10 and Base 2

•  Decimal (base 10)

•  Each digit represents a power of 10

•  4173 = 4 x 103 + 1 x 102 + 7 x 101 + 3 x 100

•  Binary (base 2)

•  Each bit represents a power of 2

•  10110 = 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 22

Decimal to binary conversion:

Divide repeatedly by 2 and keep remainders

12/2 = 6 R = 0
6/2 = 3 R = 0
3/2 = 1 R = 1
1/2 = 0 R = 1
Result = 1100

6

Writing Bits is Tedious for People

•  Octal (base 8) – easy to write using a 10-key keypad

•  Digits 0, 1, …, 7

•  Hexadecimal (base 16) – easier to manipulate

•  Digits 0, 1, …, 9, A, B, C, D, E, F

0000 = 0
 1000 = 8

0001 = 1
 1001 = 9

0010 = 2
 1010 = A

0011 = 3
 1011 = B

0100 = 4
 1100 = C

0101 = 5
 1101 = D

0110 = 6
 1110 = E

0111 = 7
 1111 = F

Thus the 16-bit binary number

1011 0010 1010 1001

converted to hex is

B2A9

4

7

Representing Colors: RGB

•  Three primary colors

•  Red

•  Green

•  Blue

•  Intensity

•  8-bit number for each color (e.g., two hex digits)

•  So, 24 bits to specify a color

•  In HTML, e.g. course “Schedule” Web page

•  Red: De-Comment Assignment Due</

span>

•  Blue: Reading Period

•  Same thing in digital cameras

•  Each pixel is a mixture of red, green, and blue

8

Finite Representation of Integers

•  Fixed number of bits in memory

•  Usually 8, 16, or 32 bits

•  (1, 2, or 4 bytes)

•  Unsigned integer

•  No sign bit

•  Always 0 or a positive number

•  All arithmetic is modulo 2n

•  Examples of unsigned integers

•  00000001  1

•  00001111  15

•  00010000  16

•  00100001  33

•  11111111  255

5

9

Adding Two Integers

•  From right to left, we add each pair of digits

•  We write the sum, and add the carry to the next column

 1 9 8

+ 2 6 4

Sum

Carry

 0 1 1

+ 0 0 1

Sum

Carry
2

1

6

1

4

0

0

1

0

1

1

0

Base 10 Base 2

10

Binary Sums and Carries

a
b
Sum

a
b
Carry

0
0
0

0
0
0

0
1
1

0
1
0

1
0
1

1
0
0

1
1
0

1
1
1

XOR

(“exclusive OR”)

AND

 0100 0101

 + 0110 0111

 1010 1100

69
103

172

6

11

Modulo Arithmetic

•  Consider only numbers in a range

•  E.g., five-digit car odometer: 0, 1, …, 99999

•  E.g., eight-bit numbers 0, 1, …, 255

•  Roll-over when you run out of space

•  E.g., car odometer goes from 99999 to 0, 1, …

•  E.g., eight-bit number goes from 255 to 0, 1, …

•  Adding 2n doesnʼt change the answer

•  For eight-bit number, n=8 and 2n=256

•  E.g., (37 + 256) mod 256 is simply 37

•  This can help us do subtraction…

•  Suppose you want to compute a – b

•  Note that this equals a + (256 -1 - b) + 1

12

Oneʼs and Twoʼs Complement

•  Oneʼs complement: flip every bit

•  E.g., b is 01000101 (i.e., 69 in decimal)

•  Oneʼs complement is 10111010

•  Thatʼs simply 255-69

•  Subtracting from 11111111 is easy (no carry needed!)

•  Twoʼs complement

•  Add 1 to the oneʼs complement

•  E.g., (255 – 69) + 1  1011 1011

 - 0100 0101
 1111 1111

 1011 1010

b

oneʼs complement

7

13

Putting it All Together

•  Computing “a – b”

•  Same as “a + 256 – b”

•  Same as “a + (255 – b) + 1”

•  Same as “a + onesComplement(b) + 1”

•  Same as “a + twosComplement(b)”

•  Example: 172 – 69

•  The original number 69:
0100 0101

•  Oneʼs complement of 69:
1011 1010

•  Twoʼs complement of 69:
1011 1011

•  Add to the number 172:
1010 1100

•  The sum comes to:
0110 0111

•  Equals: 103 in decimal

 1010 1100

 +1011 1011

 10110 0111

14

Signed Integers

•  Sign-magnitude representation

•  Use one bit to store the sign

•  Zero for positive number

•  One for negative number

•  Examples

•  E.g., 0010 1100  44

•  E.g., 1010 1100  -44

•  Hard to do arithmetic this way, so it is rarely used

•  Complement representation

•  Oneʼs complement

•  Flip every bit

•  E.g., 1101 0011  -44

•  Twoʼs complement

•  Flip every bit, then add 1

•  E.g., 1101 0100  -44

8

15

Overflow: Running Out of Room

•  Adding two large integers together

•  Sum might be too large to store in the number of bits available

•  What happens?

•  Unsigned integers

•  All arithmetic is “modulo” arithmetic

•  Sum would just wrap around

•  Signed integers

•  Can get nonsense values

•  Example with 16-bit integers

•  Sum: 10000+20000+30000

•  Result: -5536

16

Bitwise Operators: AND and OR

•  Bitwise AND (&)

•  Mod on the cheap!

•  E.g., 53 % 16

•  … is same as 53 & 15;

•  Bitwise OR (|)

&
0

1

0 1
0 0

0 1

|

0

1

0 1
0 1

1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 1 5

9

17

Bitwise Operators: Not and XOR

• Oneʼs complement (~)

•  Turns 0 to 1, and 1 to 0

•  E.g., set last three bits to 0

•  x = x & ~7;

• XOR (^)

•  0 if both bits are the same

•  1 if the two bits are different

^

0

1

0 1
0 1

1 0

18

Bitwise Operators: Shift Left/Right

•  Shift left (<<): Multiply by powers of 2

•  Shift some # of bits to the left, filling the blanks with 0

•  Shift right (>>): Divide by powers of 2

•  Shift some # of bits to the right

•  For unsigned integer, fill in blanks with 0

•  What about signed negative integers?

•  Can vary from one machine to another!

0 0 1 1 0 1 0 1 53

1 1 0 1 0 0 0 0 53<<2

0 0 1 1 0 1 0 1 53

0 0 0 0 1 1 0 1 53>>2

10

19

Example: Counting the 1ʼs

•  How many 1 bits in a number?

•  E.g., how many 1 bits in the binary representation of 53?

•  Four 1 bits

•  How to count them?

•  Look at one bit at a time

•  Check if that bit is a 1

•  Increment counter

•  How to look at one bit at a time?

•  Look at the last bit: n & 1

•  Check if it is a 1: (n & 1) == 1, or simply (n & 1)

0 0 1 1 0 1 0 1

20

Counting the Number of ʻ1ʼ Bits

#include <stdio.h>
#include <stdlib.h>
int main(void) {
 unsigned int n;
 unsigned int count;
 printf("Number: ");
 if (scanf("%u", &n) != 1) {
 fprintf(stderr, "Error: Expect unsigned int.\n");
 exit(EXIT_FAILURE);
 }
 for (count = 0; n > 0; n >>= 1)
 count += (n & 1);
 printf("Number of 1 bits: %u\n", count);
 return 0;
}

11

21

Summary

•  Computer represents everything in binary

•  Integers, floating-point numbers, characters, addresses, …

•  Pixels, sounds, colors, etc.

•  Binary arithmetic through logic operations

•  Sum (XOR) and Carry (AND)

•  Twoʼs complement for subtraction

•  Bitwise operators

•  AND, OR, NOT, and XOR

•  Shift left and shift right

•  Useful for efficient and concise code, though sometimes cryptic

22

The Main Event

The Design of C

12

23

Goals of C

Designers wanted C to support:

•  Systems programming

•  Development of Unix OS

•  Development of Unix programming tools

But also:

•  Applications programming

•  Development of financial, scientific, etc. applications

Systems programming was the primary intended use

24

The Goals of C (cont.)

The designers of wanted C to be:

•  Low-level

•  Close to assembly/machine language

•  Close to hardware

But also:

•  Portable

•  Yield systems software that is easy to port to differing hardware

13

25

The Goals of C (cont.)

The designers wanted C to be:

•  Easy for people to handle

•  Easy to understand

•  Expressive

•  High (functionality/sourceCodeSize) ratio

But also:

•  Easy for computers to handle

•  Easy/fast to compile

•  Yield efficient machine language code

Commonality:

•  Small/simple

26

Design Decisions

In light of those goals…

•  What design decisions did the designers of C have?

•  What design decisions did they make?

Consider programming language features, from simple to
complex…

14

27

Feature 1: Data Types

•  Previously in this lecture:

•  Bits can be combined into bytes

•  Our interpretation of a collection of bytes gives it meaning

•  A signed integer, an unsigned integer, a RGB color, etc.

•  A data type is a well-defined interpretation of a collection of
bytes

•  A high-level programming language should provide
primitive data types

•  Facilitates abstraction

•  Facilitates manipulation via associated well-defined operators

•  Enables compiler to check for mixed types, inappropriate use of

types, etc.

28

Primitive Data Types

•  Issue: What primitive data types should C provide?

•  Thought process

•  C should handle:

•  Integers

•  Characters

•  Character strings

•  Logical (alias Boolean) data

•  Floating-point numbers

•  C should be small/simple

•  Decisions

•  Provide integer, character, and floating-point data types

•  Do not provide a character string data type (More on that later)

•  Do not provide a logical data type (More on that later)

15

29

•  Issue: What integer data types should C provide?

•  Thought process

•  For flexibility, should provide integer data types of various sizes

•  For portability at application level, should specify size of each data

type

•  For portability at systems level, should define integral data types in

terms of natural word size of computer

•  Primary use will be systems programming

Integer Data Types

Why?
 Why?

30

Integer Data Types (cont.)

•  Decisions

•  Provide three integer data types: short, int, and long
•  Do not specify sizes; instead:

• int is natural word size

•  2 <= bytes in short <= bytes in int <= bytes in long

•  Incidentally, on hats using gcc217

•  Natural word size:
4 bytes

• short: 2 bytes

• int: 4 bytes

• long: 4 bytes

16

31

Integer Constants

•  Issue: How should C represent integer constants?

•  Thought process

•  People naturally use decimal

•  Systems programmers often use binary, octal, hexadecimal

•  Decisions

•  Use decimal notation as default

•  Use "0" prefix to indicate octal notation

•  Use "0x" prefix to indicate hexadecimal notation

•  Do not allow binary notation; too verbose, error prone

•  Use "L" suffix to indicate long constant

•  Do not use a suffix to indicate short constant; instead must use cast

•  Examples

•  int: 123, -123, 0173, 0x7B
•  long: 123L, -123L, 0173L, 0x7BL
•  short: (short)123, (short)-123, (short)0173, (short)0x7B

Was that a good
decision?

Why?

32

Unsigned Integer Data Types

•  Issue: Should C have both signed and unsigned integer

data types?

•  Thought process

•  Must represent positive and negative integers

•  Signed types are essential

•  Unsigned data can be twice as large as signed data

•  Unsigned data could be useful

•  Unsigned data are good for bit-level operations

•  Bit-level operations are common in systems programming

•  Implementing both signed and unsigned data types is complex

•  Must define behavior when an expression involves both

17

33

Unsigned Integer Data Types (cont.)

•  Decisions

•  Provide unsigned integer types: unsigned short, unsigned
int, and unsigned long

•  Conversion rules in mixed-type expressions are complex

•  Generally, mixing signed and unsigned converts signed to

unsigned

•  See King book Section 7.4 for details

Do you see
any potential
problems?
Was providing

unsigned types a
good decision?

What decision
did the designers
of Java make?

34

Unsigned Integer Constants

•  Issue: How should C represent unsigned integer

constants?

•  Thought process

•  “L” suffix distinguishes long from int; also could use a suffix to
distinguish signed from unsigned

•  Octal or hexadecimal probably are used with bit-level operators

•  Decisions

•  Default is signed

•  Use "U" suffix to indicate unsigned

•  Integers expressed in octal or hexadecimal automatically are

unsigned

•  Examples

• unsigned int: 123U, 0173, 0x7B
• unsigned long: 123UL, 0173L, 0x7BL
• unsigned short: (short)123U, (short)0173, (short)0x7B

18

35

Thereʼs More!

To be continued next lecture!

